Abstract:
An elongated container of a truck has a closed front end wall and a hinged rear outlet closure, and a side infeed opening for receiving garbage. This empty container is configured to receive an elongated base upon which is mounted a reciprocating conveyor floor for moving garbage in the container outward through the opened rear closure for deposit at a garbage disposal site. The power drive mechanism for driving the reciprocating floor is located at the front end of the container and is shielded from input garbage by a deflector secured to the reciprocating floor. The deflector also serves as a pusher for compacting and moving garbage in the container out through the opened rear closure. The self-contained reciprocating floor is easily carried manually and fed through the opened rear closure and secured firmly in the truck container.
Abstract:
The container of a mobile cargo trailer is provided with a reciprocating slat type conveyor floor in which the elongated slats are supported at their lateral edges on V-shaped bearings which are mounted on Y-shaped supports integral with sub-deck sections on the container bottom and joined together with watertight seals. Three cross beams are connected to different groups of the slats and are coupled to hydraulic cylinders located outwardly of the front end of the container and in horizontal alignment with the slats. The cylinders are coupled to a hydraulic fluid pressure source through an arrangement of control valves to effect movement of the group of slats simultaneously in a load moving direction and sequentially in the opposite, slat-retracting direction, with interengaging abutments on the cross drives arranged for moving one of the cross drives and its slats by hydraulic power applied only to the other two cross drive cylinders.
Abstract:
At least one group of at least three elongated slats are mounted side-by-side on a frame for longitudinal reciprocation to form a conveyor, the slats being connected to a fluid pressure drive mechanism which is operable to move all of the slats of each group from a start position simultaneously in a load-conveying direction and then to move the slats of each group sequentially in the opposite direction from the advanced position back to the start position, the slats of each group being interengaged releasably in the conveying direction to insure simultaneous movement.
Abstract:
An elongated container of a truck has a closed front end wall and a hinged rear outlet closure, and a side infeed opening for receiving garbage. This empty container is configured to receive an elongated base upon which is mounted a reciprocating conveyor floor for moving garbage in the container outward through the opened rear closure for deposit at a garbage disposal site. The power drive mechanism for driving the reciprocating floor is located at the front end of the container and is shielded from input garbage by a deflector secured to the reciprocating floor. The deflector also serves as a pusher for compacting and moving garbage in the container out through the opened rear closure. The self-contained reciprocating floor is easily carried manually and fed through the opened rear closure and secured firmly in the truck container.
Abstract:
The sealless slat-type reciprocating conveyor of this invention includes on one side edge of each slat an upwardly extending inverted U-shape portion and on the opposite side edge an upwardly extending substantially straight flange portion configured for reception within the inverted U-shape portion of the adjacent slat to provide a passageway that extends upwardly from adjacent the load-supporting surface of the adjacent slat, thence around the upper end of the flange and downward to the space between adjacent slats.
Abstract:
An elongated container of a truck has a closed front end wall and a hinged rear outlet closure, and a side infeed opening for receiving garbage. This empty container is configured to receive an elongated base upon which is mounted a reciprocating conveyor floor for moving garbage in the container outward through the opened rear closure for deposit at a garbage disposal site. The power drive mechanism for driving the reciprocating floor is located at the front end of the container and is shielded from input garbage by a deflector secured to the reciprocating floor. The deflector also serves as a pusher for compacting and moving garbage in the container out through the opened rear closure. The self-contained reciprocating floor is easily carried manually and fed through the opened rear closure and secured firmly in the truck container.
Abstract:
A cargo transfer system provides a transport trailer floor with a plurality of guide tracks that slidably support a floor platform having substantially the same dimensions as the full size cargo floor of the trailer; a similar plurality of support guide tracks being provided in a shipping/receiving facility arranged for axial and elevational alignment with the guide tracks of a transport trailer positioned in the loading/unloading bay of the facility. A powered drive mechanism associated with the guide tracks in the facility releasably engages a floor platform member to push or pull the floor platform member along the aligned guide tracks between the transport trailer and the facility whereby to load or unload the entire contents of transport trailers in a single movement of the floor platform therebetween.
Abstract:
A load positioning and conveying system includes a plurality of groups of elongate conveyors, wherein each group includes at least two conveyor slats. A conveyor drive mechanism includes a first drive unit connected to one end of the conveyor slats and a second drive unit connected to the other end of the conveyor slats. Each drive unit is constructed and arranged for selective, simultaneous and independent longitudinal shifting of the conveyor slats in a single, predetermined direction.
Abstract:
An elongated container of a truck has a closed front end wall and a hinged rear outlet closure, and a side infeed opening for receiving garbage. This empty container is configured to receive an elongated base upon which is mounted a reciprocating conveyor floor for moving garbage in the container outward through the opened rear closure for deposit at a garbage disposal site. The power drive mechanism for driving the reciprocating floor is located at the front end of the container and is shielded from input garbage by a deflector secured to the reciprocating floor. The deflector also serves as a pusher for compacting and moving garbage in the container out through the opened rear closure. The self-contained reciprocating floor is easily carried manually and fed through the opened rear closure and secured firmly in the truck container.
Abstract:
A fluid pressure piston-cylinder drive unit is reciprocated automatically by coupling the opposite ends of the cylinder through delivery conduits to a source of fluid pressure and exhaust through a switching valve in which a longitudinally reciprocative spool has a pair of passageways which reversibly couple one end of the cylinder to the source of fluid pressure and the other end of the cylinder to an exhaust conduit. The opposite ends of the switching valve contain shift pistons each of which engages an end of the spool through a coil spring. The shift pistons abut the opposite ends of an elongated rod which extends freely through a bore in the spool. Bypass conduits couple the opposite ends of the cylinder through the delivery conduits one to each end of the valve body such that fluid pressure in one delivery conduit from the source is coupled to one end of the valve body while exhaust fluid pressure from the other delivery conduit is coupled to the other end of the valve body. The exhaust conduit communicates with a detent conduit in which a detent pin is moved by exhaust fluid pressure into a selected detent in the spool to secure the spool against movement. When the piston-cylinder unit is a high volume drive unit, a secondary switching valve is interposed between the cylinder and the primary switching valve to supply high volume fluid pressure to the cylinder by control from the primary switching valve.