摘要:
Embodiment of the invention improve the productivity of a magnetic disk drive that controls the flying height of a magnetic head by use of a heater. According to an embodiment, in a method for manufacturing a magnetic disk drive that writes/reads information to/from a magnetic disk medium by use of a magnetic head including a heater adapted to control the flying height, the read and write performance of the magnetic head is tested; a heating condition used at the time of heating by the heater is determined on the basis of the test results; and a control parameter that specifies the amount of heating by the heater in the determined heating condition is determined.
摘要:
Embodiment of the invention improve the productivity of a magnetic disk drive that controls the flying height of a magnetic head by use of a heater. According to an embodiment, in a method for manufacturing a magnetic disk drive that writes/reads information to/from a magnetic disk medium by use of a magnetic head including a heater adapted to control the flying height, the read and write performance of the magnetic head is tested; a heating condition used at the time of heating by the heater is determined on the basis of the test results; and a control parameter that specifies the amount of heating by the heater in the determined heating condition is determined.
摘要:
Various embodiments of the present invention pertain to enabling location specific burnishing of a disk. According to one embodiment, the smoothness of a disk is evaluated by gliding over a disk to determine if there is an asperity on the disk. If there is an asperity on the disk, a location of the asperity is stored to enable location specific burnishing of the disk.
摘要:
A system for selectively sensing and removing asperities from hard disk drive disk is disclosed. The system includes a test stand supporting the disk, the test stand having at least one suspension for flying over a surface of the disk. The system also includes a glide pad coupled to the at least one suspension for flying over the surface and locating asperities. A PZT sensor is coupled to the glide pad for sensing and mapping asperities on the surface of the disk. A burnish pad is coupled to the at least one suspension for wearing-away sensed and mapped asperities on the surface of the disk and a thermal fly height controller is coupled to the burnish pad for protruding the burnish pad when it is proximate to one of the mapped asperities for facilitating the wearing-away of the mapped asperity.
摘要:
A method for selectively sensing and removing asperities from the surface of hard disk drive media is disclosed. A thermally controlled flying height burnish slider is flown on a test stand with its thermal flying height control deactivated. The burnish slider flies at a nominal flying height over the surface of the media to remove any existing loose particles from the surface. A glide slider coupled to a PZT sensor is then flown over the surface of the media, the PZT sensor head mapping locations of any asperities on the surface of the media. The thermal flying height controlled burnish slider is next flown over the surface of the media with the thermal flying height control activated. The thermal flying height control is actuated when a mapped location of an asperity on the surface is proximate to the burnish slider, causing the burnish slider to protrude, wearing off the asperity.
摘要:
Various embodiments of the present invention pertain to enabling location specific burnishing of a disk. According to one embodiment, the smoothness of a disk is evaluated by gliding over a disk to determine if there is an asperity on the disk. If there is an asperity on the disk, a location of the asperity is stored to enable location specific burnishing of the disk.
摘要:
A glide-height disk-tester operates with the test disk rotating at a predetermined constant rotational speed and uses a glide head with an electrically-resistive heater and a thermally-responsive protrusion pad located on its trailing end. The linear velocity of the disk relative to the slider maintains the slider at its nominal fly height, which is typically higher than any expected asperity. With no current applied to the heater, the protrusion pad is generally flush with the air-bearing surface of the slider. Increasing levels of current are applied to the heater, which causes movement of the protrusion pad toward the disk surface. When the pad contacts an asperity, the current level applied at the instant of asperity contact is recorded. The applied current level can be correlated to the glide height from a previous calibration process using a calibration disk with known calibration bump heights.
摘要:
An apparatus and method for modifying a slider to increase head to disk interface reliability for contact recording systems. The method provides a suspension for reaching over a disk. A slider having a read/write head element on a trailing edge (TE) portion is also provided, the slider coupled with the suspension. In addition, an increased dynamic pitch of the slider is provided, the increased dynamic pitch increasing the height of a leading edge (LE) portion of the slider with respect to the disk and reducing the height of the TE portion of the slider with respect to the disk, wherein vertical motion of the TE portion does not collapse an air bearing provided by the LE of the slider flying above the disk.
摘要:
A method for increasing reliability during a read and/or write operation in a disk drive having a head. Data is read from a disk using a head. An amplitude of a signal obtained during reading the data is measured. A degree of variation in the signal amplitude is determined as a function of a position of the head relative to the disk. The head is selectively heated based on the variation in the signal amplitude for inducing protrusion of the head, thereby selectively reducing a fly height of the head for reducing variations of a read signal created by the head during a read operation and/or magnetic fields created by the head during a write operation.
摘要:
A method, apparatus and program storage device for sensing increased resistance changes in an MR element to detect MR sensor events. The initial MR resistance for each slider is recorded during the drive build. The MR resistance is periodically monitored at later stages of the drive build and during normal operation. The later MR sensor resistance measurements are compared to the baseline measurement taken during the drive build to determine if an MR sensor event occurs, such as contact being made between the MR sensor and the recording medium or an MR sensor being positioned ON or OFF the ramp.