摘要:
Techniques for hashing and decompression of data are disclosed. Hashing and decompression of compressed data can be integrated in order to effectively hash and decompress the compressed data at the same time. The integrated hashing and decompression techniques of the invention are useful for any computing environment and/or system where compressed data is hashed and decompressed. The invention is especially useful for safe computing environment and/or system (e.g., a Trusted Computing (TC) computing environment) where hashing decompression of compressed data can be routinely performed. The Integrity of a computing environment and/or system can be protected by integrating the decompressing and hashing of the compressed data or effectively hashing and decompressing the compressed data at the same time. A combined hashing and decompression function can be provided based on conventional hashing and compression functions by integrating their similar components and in an efficient manner.
摘要:
Improved techniques for controlling access to accessible components of computing environments are disclosed. The techniques, among other things, can be used to provide Mandatory Access Control (MAC) mechanisms for mobile and embedded systems. One or more accessible components (e.g., accessible resources) which a component may attempt to access are determined so that one or more access permissions can be stored in a manner that they can be obtained if the component attempts to access the one or more accessible components, thereby allowing access to the one or more accessible components to be determined based on access permissions that are readily available. Generally, access permissions can be identified and stored in anticipation of need. Access permissions can be identified, for example, based on the likelihood of use, or all possible access permissions can be determined and stored. A safe (e.g., a trusted) access controlling (or monitoring) system (or component) can control access to resources of a computing environment. For example, a trusted access monitoring system can be provided in a secure and trusted operating environment utilizing Mandatory Access Control (MAC) capabilities of a secure operating system (e.g., SELinux Operating System).
摘要:
Techniques for controlling access are disclosed. The techniques can be used for reference monitoring in various computing systems (e.g., computing device) including those that may be relatively more susceptible to threats (e.g., mobile phones). Allowed access can be disallowed. In other words, permission to access a component can be effectively withdrawn even though access may be on-going. After permission to access a component has been allowed, one or more disallow access conditions or events can be effectively monitored in order to determine whether to withdraw the permission to access the component. As a result, allowed access to the component can be disallowed. Access can be disallowed by effectively considering the behavior of a component in the aggregate and/or over a determined amount of time. By way of example, a messaging application can be disallowed access to a communication port if the messaging application sends more messages than an acceptable limit during a session or in 4 hours. Disallow-access policies, rules and/or conditions can be defined and modified, for example, by end-users and system administrators, allowing a customizable and flexible security environment that is more adaptable to change.
摘要:
Techniques for representation and verification of data are disclosed. The techniques are especially useful for representation and verification of the integrity of data (integrity verification) in safe computing environments and/or systems (e.g., Trusted Computing (TC) systems and/or environments). Multiple independent representative values can be determined independently and possibly in parallel for respective portions of the data. The independent representative values can, for example, be hash values determined at the same time for respective distinct portions of the data. The integrity of the data can be determined based on the multiple hash values by, for example, processing them to determine a single hash value that can serve as an integrity value. By effectively dividing the data into multiple portions in multiple processing streams and processing them in parallel to determine multiple hash values simultaneously, the time required for hashing the data can be reduced in comparison to conventional techniques that operate to determine a hash value for the data as a whole and in a single processing stream. As a result, the time required for integrity verification can be reduced, thereby allowing safe features to be extended to devices that may operate with relatively limited resources (e.g., mobile and/or embedded devices) as well as improving the general efficiency of device that are or will be using safety features (e.g., Trusted Computing (TC) device).
摘要:
In one embodiment, a method for establishing a secure multicast channel between a service provider and a terminal is provided. A request is received from the service provider for a configuration of the terminal. A configuration of the terminal at a first time is sent to the service provider. A security key is obtained, wherein the security is bound to the configuration of the terminal at the first time. Then the security key is decrypted using a configuration of the terminal at a second time, wherein the decryption fails if the configuration of the terminal at the second time is not identical to the configuration of the terminal at the first time. A secure multicast channel is then established with the service provider using the security key.
摘要:
In one embodiment, cryptographic transformation of a message is performed by first performing a table initiation phase to populate a data structure. Then, a first random number multiplied by a public key is added to each value in the data structure, in modulo of a second random number multiplied by the public key. Then an exponentiation phase is performed, wherein each modular multiplication and square operation in the exponentiation phase is performed in modulo of the second random number multiplied by the public key, producing a result. Then the result of the exponentiation phase is reduced in modulo of the public key. The introduction of the random numbers aids in the prevention of potential security breaches from the deduction of operands in the table initiation phase by malicious individuals.
摘要:
Techniques for assessing the cost of allocation of execution and affecting the allocation of execution are disclosed. The cost of allocation of execution between a first computing device (e.g., mobile device) and one or more computing resource providers (e.g., Clouds) can be determined during runtime of the code. A computing system can operate independently of the first computing device and a computing resource provider and provide execution allocation cost assessment. Execution allocation cost can be assessed based on execution allocation data pertaining to the first computing device and computing resource providers. Power consumption of a mobile device can be used as a factor in determining how to allocate individual components of an application program between a mobile phone and a Cloud. In an Elastic computing environment, external computing resources can be used to extend the computing capabilities beyond that which can be provided by internal computing resources.
摘要:
A Mandatory Access Control (MAC) aware firewall includes an extended rule set for MAC attributes, such as a security label or path. Application labels may be used to identify processes and perform firewall rule-checking. The firewall rule set may including conventional firewall rules, such as address checking, in addition to an extension for MAC attributes.
摘要:
A method for securely altering a platform component is provided, comprising: assigning certificates for public encryption and signature verification keys for the device; assigning certificates for public encryption and signature verification keys for an upgrade server; mutually authenticating a device containing the platform component and the upgrade server; causing the device and the upgrade server to exchange a session key; and providing an alteration to be made to the platform component from the upgrade server to the device using the session key.
摘要:
The security of web widgets is improved by transferring a set of access control decisions conventionally handled by the Web Runtime system (WRT) to a more secure portion of the computing system, such as a kernel in the operating system. Access control rules are extracted and provided to the more secure portion. This may be performed during widget installation or at invocation of a widget. During runtime, the more secure portion performs security checking functions for the widget instead of the WRT.