摘要:
A system for determining stiffness of an elevator system tension member includes a landing floor indicator to transmit a landing floor signal of an elevator car to a stiffness estimator, and a car position encoder to transmit a car position signal of the elevator car in a hoistway to the stiffness estimator. A machine position encoder transmits a machine position signal to the stiffness estimator. The tension member is operably connected to the machine to move the elevator car along the hoistway. A load weight sensor is located at the elevator car to transmit a load weight signal of the elevator car to the stiffness estimator. The stiffness estimator utilizes at least the landing floor signal, the car position signal, the machine position signal and the load weight signal to calculate an estimated stiffness of the tension member.
摘要:
An illustrative example embodiment of an elevator governor includes a rotatable governor mechanism, a tension sheave, and a tension frame associated with the tension sheave. The tension frame has a mass configured to bias the tension frame and the tension sheave under an influence of gravity. A damper is configured to resist vertical movement of the tension frame relative to a fixed surface in a first condition and to allow vertical movement of the tension frame relative to the fixed surface in a second, different condition.
摘要:
A system for determining stiffness of an elevator system tension member includes a landing floor indicator to transmit a landing floor signal of an elevator car to a stiffness estimator, and a car position encoder to transmit a car position signal of the elevator car in a hoistway to the stiffness estimator. A machine position encoder transmits a machine position signal to the stiffness estimator. The tension member is operably connected to the machine to move the elevator car along the hoistway. A load weight sensor is located at the elevator car to transmit a load weight signal of the elevator car to the stiffness estimator. The stiffness estimator utilizes at least the landing floor signal, the car position signal, the machine position signal and the load weight signal to calculate an estimated stiffness of the tension member.
摘要:
An elevator load bearing assembly includes a plurality of cords within a jacket. The cords are spaced from an exterior surface on the jacket such that the spacing remains generally constant along the length of the belt. The jacket has a smooth, uninterrupted exterior surface for contacting sheaves as the belt moves in the elevator system. A method of making the inventive belt assembly is disclosed. The inventive belt assembly minimizes the possibility for generating an annoying, audible sound and vibration during elevator operation.
摘要:
An elevator system including: an elevator car configured to travel through an elevator shaft; a first guide beam extending vertically through the elevator shaft, the first guide beam comprising a first surface and a second surface opposite the first surface; a propulsion system configured to move the elevator car through the elevator shaft; a first on-board energy management system configured to power the propulsion system, the first on-board energy management system is attached to the propulsion system and configured to travel with the propulsion system.
摘要:
An elevator system including: an elevator car configured to travel through an elevator shaft; a first guide beam extending vertically through the elevator shaft, the first guide beam comprising a first surface and a second surface opposite the first surface; a propulsion system configured to move the elevator car through the elevator shaft; a first on-board energy management system configured to power the propulsion system, the first on-board energy management system is attached to the propulsion system and configured to travel with the propulsion system.
摘要:
An illustrative example embodiment of an elevator governor includes a rotatable governor mechanism, a tension sheave, and a tension frame associated with the tension sheave. The tension frame has a mass configured to bias the tension frame and the tension sheave under an influence of gravity. A damper is configured to resist vertical movement of the tension frame relative to a fixed surface in a first condition and to allow vertical movement of the tension frame relative to the fixed surface in a second, different condition.
摘要:
An elevator system includes a hoistway and an elevator car positioned in and movable along the hoistway. The elevator car includes a first sheave and a second sheave spaced apart from the first sheave. The first sheave and second sheave have parallel axes of rotation and each include a traction surface and a gearless prime mover operably connected to the traction surface to drive rotation of the traction surface. A first load bearing member is positioned in the hoistway and a second load bearing member is positioned in the hoistway. The first load bearing member passes laterally under the first sheave, vertically upward between the first sheave and the second sheave, and laterally over the second sheave. The second load bearing member passes laterally under the second sheave, vertically between the second sheave and the first sheave, and laterally over the first sheave.
摘要:
An illustrative example embodiment of a device for controlling movement of an elevator car includes an emergency stopping supervisor, such as a processor and memory associated with the processor. The emergency stopping supervisor is configured to: determine when an indication from an electrical protection device indicates that the elevator car should be stopped, issue a command for the elevator car to move at a reduced speed, monitor continued movement of the elevator car at the reduced speed, and continue to allow the elevator car to move at the reduced speed until a selected condition exists or immediately cause the elevator car to stop if the reduced speed is not within a predetermined range.
摘要:
An elevator system includes a hoistway and an elevator car positioned in and movable along the hoistway. The elevator car includes a first sheave and a second sheave spaced apart from the first sheave. The first sheave and second sheave have parallel axes of rotation and each include a traction surface and a gearless prime mover operably connected to the traction surface to drive rotation of the traction surface. A first load bearing member is positioned in the hoistway and a second load bearing member is positioned in the hoistway. The first load bearing member passes laterally under the first sheave, vertically upward between the first sheave and the second sheave, and laterally over the second sheave. The second load bearing member passes laterally under the second sheave, vertically between the second sheave and the first sheave, and laterally over the first sheave.