Abstract:
Provided is a step up/down converter, in which the inductor current can be easily detected by a simple configuration in any connecting mode of the switches. This comprises a first switch, one end of which is connected to an input power source, and the other end of which is connected to one end of the inductor, a second switch, one end of which is connected to the one end of the inductor, and the other end of which is connected to a reference potential applying unit, a third switch and a fourth switch, one end of which is connected to the other end of the inductor; a capacitor circuit element, connected between the other end of the third switch and the other end of the fourth switch, and configured to generate an output voltage for applying to a load, a detecting resistor, connected between the other end of the second switch and the other end of the third switch, and configured to detect an inductor current flowing through the inductor, and a control circuit configured to perform control from the first switch to the fourth switch based on the inductor current detected by the detecting resistor.
Abstract:
The sawtooth wave generation circuit includes: a switch circuit configured to switch a connection state thereof between a first connection state, in which a current from a current source is flowed from a first terminal of the output capacitor to a second terminal of the output capacitor, and a second connection state, in which a current from the current source is flowed from the second terminal of the output capacitor to the first terminal of the output capacitor; a switch control circuit configured such that, in each connection state of the switch circuit, if an output voltage has reached a predetermined threshold which is set in relation to an intermediate voltage, the switch control circuit controls the switch circuit to switch the connection state to the other connection state at least during a part of a predetermined period thereafter.
Abstract:
A DC-DC converter transforms a DC input voltage to generate a DC output voltage by complementary switching control of a main switching transistor and a synchronous rectifying transistor. The DC-DC converter includes a soft-start circuit configured to generate a soft-start voltage rising from an initial voltage at start-up of the DC-DC converter; and a control circuit configured to control switching of the main switching transistor and the synchronous rectifying transistor based on the soft-start voltage to perform soft start of the DC-DC converter. The control circuit brings both of the main switching transistor and the synchronous rectifying transistor to an off state while the soft-start voltage is lower than the DC output voltage.
Abstract:
A power supply protection circuit is a circuit that controls a protection switch provided on a power supply line connecting a direct current power supply and a load circuit. The power supply protection circuit includes: circuitry connected to the protection switch; and a controller that switches an operation state of the circuitry between a first state and a second state. The first state is an operation state in which driving of the protection switch is enabled when the protection switch is a first semiconductor switch having a control terminal connected to a semiconductor layer of a first conductivity type. The second state is an operation state in which driving of the protection switch is enabled when the protection switch is a second semiconductor switch having a control terminal connected to a semiconductor layer of a second conductivity type that is different from the semiconductor layer of a first conductivity type.