Abstract:
A heart rate detection module including a PPG measuring device, a motion sensor and a processing unit is provided. The PPG measuring device is configured to detect a skin surface in a detection period to output a PPG signal. The motion sensor is configured to output an acceleration signal corresponding to the detection period. The processing unit is configured to respectively convert the PPG signal and the acceleration signal to first frequency domain information and second frequency domain information, determine a denoising parameter according to a maximum spectrum peak value of the second frequency domain information to denoise the first frequency domain information, and calculate a heart rate according to a maximum spectrum peak value of the denoised first frequency domain information.
Abstract:
There is provided a physiological detection system including a physiological detection device and a host. The physiological detection device is configured to transmit a physiological data series to the host according to a local oscillation frequency. The host is configured to calculate a physiological value according to the physiological data series and determine a correction parameter according to a receiving data parameter and a reference data parameter, wherein the correction parameter is configured to correct the physiological value, process the physiological data series or adjust the local oscillation frequency of the physiological detection device.
Abstract:
An apparatus and a method for acquiring object image of a pointer are provided. The apparatus is suitable for an optical touch system and is used for acquiring an object image of a pointer when the pointer interacts with a touch surface of the optical touch system. The apparatus includes an image sensor and a processing circuit. The image sensor is used for acquiring an image of the touch surface. When the pointer approaches the touch surface, the processing circuit compares at least a part of the information of a sensed image with a threshold value, so as to determine a comparison range. Then, the processing circuit determines another threshold value according to the image information in the comparison range. Afterwards, the processing circuit compares the image information in the comparison range with the aforementioned another threshold value, so as to acquire an object image of the pointer.
Abstract:
The present disclosure provides an object detection method including: pre-storing a lookup table of touch reference values, wherein the lookup table of touch reference values records a plurality of touch reference values associated with image positions of a plurality of calibration object images formed in calibration images captured by a first image sensor; capturing a first image, wherein the first image has at least an object image corresponding to a pointer formed therein; generating a first light distribution curve according to the first image; defining a first detection region in the first light distribution curve; obtaining at least one touch reference value associated with the object image using the lookup table of touch reference values; comparing at least one brightness value within the first detection region of the first light distribution curve with the at least one touch reference value obtained.
Abstract:
There is provided a processing method of an object image for an optical touch system includes the steps of: capturing, using a first image sensor, a first image frame containing a first object image; capturing, using a second image sensor, a second image frame containing a second object image; generating a polygon image according to the first image frame and the second image frame; and determining a short axis of the polygon image and at least one object information accordingly.
Abstract:
A touch-control system adapted to be used with a plurality of pointers is provided. The touch-control system includes a touch-control panel, a first pointer sensing module, a second pointer sensing module and a processing circuit. The first pointer sensing module is configured to sense a first set of image information of the pointers and accordingly calculate a first candidate coordinate group of the pointers. The second pointer sensing module is configured to sense a second set of image information of the pointers. The processing circuit is electrically coupled to the first and second pointer sensing modules and configured to select, according to the second set of image information, two or more coordinate positions in the first candidate coordinate group to as actual coordinate positions of the pointers.
Abstract:
There is provided a physiological detection system including a physiological detection device and a host. The physiological detection device is configured to transmit a physiological data series to the host according to a local oscillation frequency. The host is configured to calculate a physiological value according to the physiological data series and determine a correction parameter according to a receiving data parameter and a reference data parameter, wherein the correction parameter is configured to correct the physiological value, process the physiological data series or adjust the local oscillation frequency of the physiological detection device.
Abstract:
The present disclosure provides an optical touch system and an object analyzation method thereof. The optical touch system includes a panel and an image sensing apparatus installed thereon. The object analyzation method includes the following steps: capturing a first image across a touch surface of the panel with an image sensing apparatus, wherein the first image has an object image formed corresponding to the position of a pointer on the touch surface; defining an image window that corresponds to the image position of the object image in the first image captured; determining whether the pointer is touching the touch surface or hovering over the touch surface by analyzing the brightness difference among the plurality of pixels in the image window.
Abstract:
A wearable device including a skin sensor and a processor is provided. The processor is configured to receive an authentication data for authenticating a user when a wearing state of the wearable device is adjacent to a skin surface of the user, execute a predetermined function in response to a request when the authentication data matches a pre-stored data and the skin sensor determines that the wearable device does not leave the skin surface after the authentication data is received, and reject or ignore the request when the skin sensor determines that the wearable device leaves the skin surface before the predetermined function is executed.
Abstract:
There is provided a system architecture including a PPG hardware module and a MEMS hardware module. The PPG hardware module processes PPG raw data, which is generally composed of analog signals or digital signals. The PPG hardware module filters the raw data for later digital calculation to, for example, find out frequency signals with higher peak values. The PPG hardware module then outputs the selected frequency signals to an MCU for heart rate calculation. The MEMS hardware module receives MEMS raw data from a motion detector made of MEMS elements. The MEMS raw data represents motion status of a user that could possibly affect the heart rate determination result. The MEMS hardware module filters the raw data for later digital calculation to find out frequency signals with higher peak values caused by motion.