摘要:
A surface capacitive touch panel, a driving method thereof, a display apparatus using the same, and an electronic apparatus using the same are provided. The surface capacitive touch panel includes a substrate, a conductive film, and a plurality of driving sensing electrodes. The conductive film is formed on the substrate. The conductive film has an anisotropy of impedance to define a lower impedance direction and a higher impedance direction. The driving sensing electrodes are disposed on at least one side of the conductive film and the at least one side is substantially perpendicular to the lower impedance direction. The surface capacitive touch panel of the invention has high positioning accuracy. The touch sensing accuracy of the display apparatus and the electronic apparatus using the surface capacitive touch panel is also desirable.
摘要:
A touch panel includes an insulating substrate, a rectangular transparent conductive layer and a number of electrodes. The insulating substrate has two opposite surfaces. The rectangular transparent conductive layer, fixed on one of the surfaces of the insulating substrate, has two opposite long sides and two opposite short sides. The electrodes are disposed at the short sides of the rectangular transparent conductive layer with a regular interval and electrically connected to the rectangular transparent conductive layer. The rectangular transparent conductive layer further has anisotropic impedance and defines an impedance direction substantially perpendicular to the short sides of the rectangular transparent conductive layer.
摘要:
An apparatus and a method for controlling a touch panel are disclosed herein, the apparatus includes an object detection module and an adjusting device. The object detection module can detect a position of at least one object contacting the touch panel. A position analyzer recognizes position of the object and the adjusting device can set the touch panel to a predetermined position according to the result recognized by the position analyzer.
摘要:
A multi-touch detecting method is adapted for detecting locations of touched points on a touch panel including first and second conductive films, and includes following steps. First measuring points of the first conductive film distributed along X-axis of a Cartesian plane are scanned, and x-components are determined accordingly. Second measuring points of the second conductive film distributed along Y-axis of the Cartesian plane are scanned, and y-components are determined accordingly. A first voltage is applied to the first conductive film, and A second voltage is applied to at least one of the second measuring points with the location on the Y-axis adjacent to or overlapping one of the y-components. Voltages at the first measuring points with the locations on the X-axis adjacent to or overlapping the x-components are measured sequentially and one of the y-components and one of the x-components are outputted.
摘要:
An electronic paper display device includes an electronic paper display panel, and a functional layer. The electronic paper display panel includes a common electrode layer and a display surface. The functional layer is located on the display surface and includes a carbon nanotube touching functional layer. A distance between the common electrode layer and the carbon nanotube touching functional layer is above 100 microns and equal to or less than 2 millimeters.
摘要:
A single-cell gap type transflective liquid crystal display and a driving method thereof are provided. A multiplexer is added to each pixel of a thin-film transistor substrate of the display to respectively control voltages of a transmissive region and a reflective region of each pixel in conjunction with a modulation scan signal and different voltage data signals. Thus, a VT curve of the transmissive region and a VR curve of the reflective region can be adjusted to be identical.
摘要:
A capacitive touch panel includes a first conductive film with anisotropic impedance, a second conductive film with conductive structures, and an insulating layer disposed between the first conductive film and the second conductive film. The conducting direction of the conductive structures is perpendicular to the direction of least impedance of the first conductive film.
摘要:
A positioning method for a touch screen including a conductive layer having an anisotropic impedance and separated detecting electrodes disposed at a side of the conductive layer is provided. A first voltage is provided to the conductive layer. A second voltage is provided to the conductive layer when the touch screen is touched, wherein a touch point is defined as where the second voltage is applied. Voltages of the detecting electrodes are sequentially measured. The relative extreme voltage and the voltage of the detecting electrode closest to the relative extreme voltage are selected. A coordinate of the touch point in the conductive layer is determined according to the relative extreme voltage and where the detecting electrode providing the voltage closest to the relative extreme voltage is.
摘要:
A driving method and apparatus of a touch panel are provided. The touch panel includes a conductive layer with anisotropic conductivity. The method includes the following steps. An electrode pair is selected one by one in a plurality of electrode pairs. Each of the electrode pairs includes a first electrode and a second electrode. The first electrodes are disposed on a first side of the conductive layer, and the second electrodes are disposed on a second side of the conductive layer. When an electrode pair of the electrode pairs is selected, the first electrode and the second electrode of the selected electrode pair are driven one by one.
摘要:
A method for detecting a touch spot of the touch panel includes the following steps. The electrode pairs are scanned along the impedance direction for determining a first coordinate. A number of electrode pairs near the first coordinate are selected to obtain an electrode pair signal. The first driving electrodes of the selected electrode pairs are scanned to obtain a first signal. The second driving electrodes of the selected electrode pairs are scanned to obtain a second signal. A second coordinate is determined according to the electrode pair signal, first signal, and second signal. Finally, the touch spot is determined according to the first coordinate, and second coordinate.