Abstract:
This invention disclosure relates to a community access television (CATV) signal distribution system which improves signal isolation issues for systems which are distributing both CATV signals and in-home entertainment (IHE) signals. The signal distribution system includes a signal input port, a first multi-port signal splitter and a second multi-port signal splitter. The first multi-port signal splitter is coupled to the signal input port through a first diplexer, and the second multi-port signal splitter is coupled to the signal input port through a second diplexer. In some embodiments the first diplexer high-pass node and the second diplexer high-pass node are coupled together. In some embodiment the signal distribution system includes a signal output port coupled to the signal input port through a third diplexer. The high-pass node of the third diplexer is coupled to the high-pass node of the first diplexer.
Abstract:
An isolator includes a conditioning circuit configured to filter signals communicated therethrough. The isolator also includes a coupling member comprising an anti-rotation feature. The anti-rotation feature is configured to prevent the conditioning circuit from rotating with respect to the coupling member to maintain a stable ground contact for the conditioning circuit. The isolator also includes a first annular circuit positioned around the coupling member. The isolator also includes a second annular circuit positioned around the coupling member and axially offset from the first annular circuit. The first and second annular circuits are configured to provide radio-frequency (RF) coupling with the coupling member.
Abstract:
A cord for suppressing noise from a modem includes a hot wire, a neutral wire, and a signal balancing device. The hot wire is configured to connect to a hot power port of a modem. The neutral wire is configured to connect to a neutral power port of the modem. The signal balancing device is configured to connect to an outer conductor of a coaxial radiofrequency (RF) port of the modem and to the neutral wire or a ground wire. The signal balancing device is configured to balance RF signals transmitted through the coaxial RF port.
Abstract:
A filter circuit includes a pass band filter and a multipath interference mitigation leg. The pass band filter is disposed along a signal path between a provider-side port and a user-side port. The pass band filter is configured to pass a provider bandwidth signal received at the provider-side port and block at least a portion of a home network bandwidth signal received at the user-side port. A frequency spectrum of the home network bandwidth signal is distinct from, and higher than, a frequency spectrum of the provider bandwidth signal. The multipath interference mitigation leg is operatively branched to ground from the signal path. The multipath interference mitigation leg is configured to increase a return loss in the home network bandwidth signal.
Abstract:
A filter circuit is provided having multipath interference mitigation. The filter includes a signal path extending from an input to an output. The signal path includes a conductive path and a ground. A pass band filter is disposed along the signal path between the input and the output. The pass band filter passes a first frequency spectrum in a provider bandwidth, and attenuates a second frequency spectrum in a home network bandwidth. The filter circuit further includes a multipath interference mitigation leg operatively branched from the signal path. The multipath interference mitigation leg increases a return loss of the home network bandwidth. A frequency response of the filter circuit is characterized by an insertion loss characteristic between the input and the output being less than 3 dB in the provider bandwidth, and more than 20 dB in the home network bandwidth.
Abstract:
A network interface device has a safeguard apparatus. The safeguard apparatus is operable in power on, power off, and degraded power conditions. In power on operation, the safeguard apparatus maintains the quality of active and passive branch communications. During power off and degraded power operation, the safeguard apparatus safeguards the quality of the passive communication path.
Abstract:
A cord for suppressing noise from a modem includes a hot wire, a neutral wire, and a signal balancing device. The hot wire is configured to connect to a hot power port of a modem. The neutral wire is configured to connect to a neutral power port of the modem. The signal balancing device is configured to connect to an outer conductor of a coaxial radiofrequency (RF) port of the modem and to the neutral wire or a ground wire. The signal balancing device is configured to balance RF signals transmitted through the coaxial RF port.
Abstract:
The present disclosure provides methods and systems for mitigating signal noise. In implementations, the systems and methods perform operations including continuously determining an instantaneous power of a signal path. The operations also include determining a dynamic noise threshold by sampling the instantaneous power at different times and selecting a minimum of the instantaneous power sampled during the different times. The operations further include determining that the instantaneous power is less than the dynamic noise threshold. Additionally, the operations include blocking communication from the signal path. Further, the operations include iteratively updating the dynamic noise threshold.
Abstract:
A demagnetizing device includes, in one embodiment, a demagnetizer. The demagnetizer is operable to generate a corrective magnetic field. The corrective magnetic field is operable to act upon a ferrite-based core to maintain suitable performance of a network-connected device which includes such core.
Abstract:
Disclosed is a signal splitter that includes a coupled transmission line element coupled between two output ports of the signal splitter. The coupled transmission line element is used to lower the isolation between the two output ports for a particular frequency band. The coupled transmission line element includes a first and a second elongate electrical conductor. The first and the second elongate electrical conductor first ends are coupled to the signal transmission path that connects the two output ports. The first and the second elongate electrical conductor second ends are un-terminated. The first elongate electrical conductor and the second elongate electrical conductor are not shorted together, and the first elongate electrical conductor and the second elongate electrical conductor are electrostatically coupled, such as by twisting them together into a helix.