摘要:
A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt. %, more preferably 0.001-0.010 wt. %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-0.10. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt. % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
摘要:
A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt. %, more preferably 0.001-0.010 wt. %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-0.10. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt. % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
摘要:
An aircraft window assembly (10) includes a first panel (12) having a first surface (14) and a second surface (16). In a first state in which there is no pressure difference between the first surface (14) and the second surface (16), the first panel (12) has a cross-sectional shape selected from planar, outwardly convex, or inwardly convex. In a second state in which there is a pressure difference between first surface (14) and the second surface (16), the first panel (12) has an outwardly convex cross-sectional shape.
摘要:
An aircraft window assembly (10) includes a first panel (12) having a first surface (14) and a second surface (16). in a first state in which there is no pressure difference between the first surface (14) and the second surface (16), the first panel (12) has a cross-sectional shape selected from planar, outwardly convex, or inwardly convex. In a second state in which there is a pressure difference between first surface (14) and the second surface (16), the first panel (12) has an outwardly convex cross-sectional shape.