Abstract:
A hybrid-electric powerplant (HEP) of an aircraft comprises a thermal engine providing a first torque input to the HEP and an electric motor providing a second torque input to the HEP. A power management system connected to one or both of the thermal engine and the electric motor comprises an engine control unit (ECU) connected to the thermal engine. The ECU controls fuel supplied to the thermal engine. An electric propulsion control (EPC) is connected to the electric motor and controls power supplied to the electric motor. The EPC includes an EPC protection module in communication with a power source for the electric motor. The EPC protection module disables power supplied to the electric motor upon receipt of a signal indicative of one or more of an over-speed condition and an over-torque condition detected in the HEP.
Abstract:
Systems and methods for detecting shear of a rotating shaft are described herein. A first measurement and a second measurement of a rotational speed of the shaft are acquired. The first measurement is taken at a first location along the shaft and the second measurement taken at a second location along the shaft. The first location is axially-spaced from the second location. The first and second location are on opposite sides of an expected breakage point of the shaft. A first rate of change of the rotational speed is determined from the first measurement. A second rate of change is determined from the second measurement. Shear of the shaft is detected when the first rate of change is positive and the second rate of change is negative.
Abstract:
There are described a system and method for operating a thrust reverser of an aircraft engine, the thrust reverser having a deployed state and a stowed state. The method comprises placing the thrust reverser in the stowed state when the thrust reverser is in the deployed state, a thrust lever associated with the engine is in a forward position, and the engine is rotating at a speed below an idle speed, wherein hydraulic pressure for stowing the thrust reverser is provided by a pump driven by the engine rotating at the speed below the idle speed.
Abstract:
A first and second engine are connected to a drive train for driving an aircraft accessory. A gearbox is connected to a primer mover propulsor and an actuator operatively associated with a selected engine is moveable between a position in which the selected engine drivingly engages the gearbox for driving the propulsor and a position in which the selected engine disengages from the gearbox. A position signal, a status signal, and a request signal respectively indicative of a present position of the actuator, a governing state and present speed of each engine, and a request for movement of the actuator from the present position to the other position are received. If the selected engine's speed differs from a predetermined threshold, a control signal is output for causing the engine's speed to be adjusted towards the threshold. A control signal indicating that movement of the actuator is permitted is then output.
Abstract:
Methods and systems for detecting an uncommanded or uncontrollable high thrust (UHT) event in an aircraft are described. The method comprises detecting an abnormal engine response as a function of a fuel flow error, the fuel flow error indicative of a presence of excess thrust; in response to detecting the fuel flow error, detecting a UHT event based on the excess thrust and as a function of a threshold; and accommodating the UHT event when the UHT event is detected.
Abstract:
Herein provided are methods and systems for detecting an uncommanded or uncontrollable high thrust (UHT) event in an aircraft, comprising arming a UHT function, comparing an engine fan speed to a reference target and detecting a first condition when a first threshold is exceeded, comparing a rate of change of a high pressure rotor speed to a reference deceleration schedule and detecting a second condition when a second threshold is exceeded, detecting a UHT event based on excess thrust when the first condition and the second condition are detected, and accommodating the UHT event.
Abstract:
Herein provided are methods and systems for detecting an uncommanded or uncontrollable high thrust (UHT) event in an aircraft, comprising arming a UHT function, detecting a fuel flow error when an actual fuel flow minus a commanded fuel flow exceeds a first threshold, the fuel flow error indicative of a presence of excess thrust, detecting a UHT event based on excess thrust and as a function of a second threshold, upon detection of the fuel flow error, and accommodating the UHT event.