Abstract:
Herein provided are methods and systems for controlling an engine having a variable geometry mechanism. A pressure ratio between a first pressure at an inlet of the engine and a predetermined reference pressure is determined. An output power for the engine is determined. The output power is adjusted based at least in part on the pressure ratio to obtain a corrected output power. A position control signal for a variable geometry mechanism of the engine is generated based on the corrected output power and the pressure ratio. The position control signal is output to a controller of the engine to control the variable geometry mechanism.
Abstract:
A method for synchronizing the engines of an airplane according to one activation logic having a deactivated state (20), an armed state (22), and one activated state (16), in which: the switching (36) of the synchronization from the armed state to the activated state is carried out via a first and then a second successive intermediate state (38, 39) of the activation logic, every instance of the activation logic switching from the second intermediate state (39) to the activated state involves the following: taking into consideration, on each engine, the activation state of the synchronization, and exchanging said data between the engines, the switching of the activation logic of one of the engines to the activated state requires that the safety and activation conditions of the other engine are all met. if one of the engines enters the deactivated state, the other engine does so as well; and for each engine, the switching (36, 42) of the synchronization from the armed state to the first and then to the second intermediate state takes place automatically when a first portion and then a second portion of the safety and/or activation conditions are met.
Abstract:
A regulator device for automatically regulating a power plant of a rotary wing aircraft having a turbine engine includes a computer system. The computer system, while implementation of an idling mode of operation of the turbine engine is requested and the aircraft is standing on ground, implements the idling mode of operation and operates the turbine engine in compliance with idling mode of operation as a function of operational and hierarchically ordered conditions either through a first mode of regulation by regulating a speed of rotation (Ng) of a gas generator of the turbine engine or through a second mode of regulation by regulating a speed of rotation (NTL) of a free turbine of the turbine engine.
Abstract:
Embodiments of the present invention include unique gas turbine engines. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
Abstract:
A two-shaft gas turbine control system and method are provided that can enhance the efficiency and reliability thereof by controlling the amount of intake air spray and the rotational speed of a high-pressure turbine in accordance with the aperture of an inlet guide vane in a state where a two-shaft gas turbine is being operated with the efficiency of its compressor reduced.The control system includes a droplet spray device for spraying droplets to intake air for the compressor and a controller. The controller includes a fuel control section for adjusting a flow rate of the fuel to be supplied to the combustor, a spray flow rate control section for adjusting a flow rate of spray water to be supplied to the droplet spray device, an inlet guide vane aperture control section for adjusting the aperture of the inlet guide vane, and an efficiency improvement control section for outputting a command signal for bringing a balance between driving force for the compressor and power output of the high-pressure turbine to the fuel control section, the spray flow rate control section and the inlet guide aperture control section. In response to the commands from the improvement control section, the controller reduces the rotational speed of the high-pressure turbine and controls the inlet guide vane so as to be more open, thereby appropriately controlling the flow rate of the spray water.
Abstract:
The present invention relates to an automatic method of regulating a power plant (3′) of an aircraft (1), the power plant having at least one turbine engine (3), each engine (3) being capable of operating in an idling mode of operation. A calculation system (15) executes stored instructions in order to implement the idling mode of operation as a function of operational and ordered conditions either via a first regulation mode by regulating a first speed of rotation (Ng) of said gas generator (4), or via a second mode of regulation by regulating a second speed of rotation (NTL) of said free turbine (7).
Abstract:
A method for producing the electrical power required for equipment on board an airplane is disclosed. Auxiliary power is taken off by a shaft driven by the high pressure turbine and, when idling, the efficiency of the low pressure turbine is degraded so as to enable the high pressure turbine to operate at a speed that is sufficient for delivering the required auxiliary power.
Abstract:
The present invention relates to a method and to a device (D) enabling a health check to be performed on at least a first turbine engine (M1) of a rotorcraft, the rotorcraft being provided with first and second turbine engines (M1 and M2) controlled respectively by first and second control means (MC1 and MC2). The device is remarkable in that it comprises check means (C) provided with main means (C1), the main means (C1) controlling the first and second control means (MC1 and MC2) so that the surveillance parameters of the first and second turbine engines (M1 and M2) respectively reach the real first and second final values (V1f and V2f) as determined in accordance with the method of the invention.
Abstract:
A gas turbine engine, in particular a turboshaft engine, includes a spool having a turbine and a gas generator compressor mounted thereto, a source of heat positioned between the turbine and the compressor, a first shaft and a free turbine mounted to the first shaft, and a control system for transferring power between the spool and the shaft. The operating speed of the gas generator compressor is re-matched in order to improve the efficiency and surge margin of the gas generator compressor and to improve the transient performance of the gas turbine engine.
Abstract:
A system employing a torque converter and a synchronizing motor to start up a large rotational driver/load combination. The torque converter is employed to increase the rotational speed of the load to the maximum speed permitted by the torque converter. The synchronizing motor is then employed to further increase the rotational speed of the load to substantially match the rotational speed of the driver.