Abstract:
Process for the direct reduction of metal oxides (2) using a reduction gas, which is based on at least one precursor gas, wherein at least one precursor gas (15, 22) is based on reformer gas obtained by catalytic reforming of hydrocarbon-containing gas (4) in a reformer (3), and in the preparation of the reduction gas at least one precursor gas based on reformer gas is heated up by means of electrical energy. An apparatus for the direct reduction (1) of metal oxides (2) by means of a reduction gas comprises a catalytic reformer (3) for producing a reformer gas, a reformer gas line (5) for removing reformer gas from the catalytic reformer (3), a reduction unit (9), a reduction gas line (8) for introducing reduction gas into the reduction unit (9), and at least one precursor gas line (6), wherein at least one precursor gas line extending from the reformer gas line comprises an electrical gas heating device (7, 10, 17), and at least one precursor gas line (6) extends from the reformer gas line (5), and each precursor gas line (6) opens out into the reduction gas line (8).
Abstract:
A method for producing liquid pig iron (1), includes reducing iron-oxide-containing feed materials (2) to form a partially reduced first iron product (3) in a first reduction system (4), introducing the partially reduced first iron product (3), a first oxygen-containing gas (9, 9a), and a first carbon carrier (10) into a melter gasifier (11), introducing a second gaseous and/or liquid carbon carrier (13) and a second oxygen-containing gas (9b) into a mixing region (18) within the melter gasifier (11) above the fixed bed of the melter gasifier, mixing the second gaseous and/or liquid carbon carrier (13) with the second oxygen-containing gas (9b) in the mixing region (18), wherein the combustion air ratio is set in the range of 0.2 to 0.4, preferably between 0.3 and 0.35, in order to achieve partial oxidation of the second gaseous or liquid carbon carrier (13) within the mixing region (18), and mixing the gas resulting from the partial oxidation from the mixing region (18) with the gas in the remaining volume within the melter gasifier (11).
Abstract:
A conveyor system (1) for the continuous or discontinuous conveyance of a reactive and/or hot and/or abrasive material to be conveyed along a conveyor path includes a system housing (3) enclosing the conveyor path, which has at least one fluid inlet (5) for the introduction of fluid into the system housing (3), at least one fluid outlet (7, 9) for the discharge of fluid out of the system housing (3), a charging inlet (4) for introducing material to be conveyed into the system housing (3), and, apart from the at least one fluid inlet (5), the at least one fluid outlet (7, 9) and the charging inlet (4), are implemented in a technically fluid-tight manner.
Abstract:
A method and a device for balancing out amount fluctuations while simultaneously increasing the temperature of an export gas (2) used in a reduction process (1). A first partial amount (3) of a recycling gas (4) is cooled in at least one recycling-gas cooler (5) to form a cold recycling gas (6) and the cold recycling gas (6) is fed to the export gas (2) in a pressure-controlled and/or amount-controlled manner in order to balance out amount fluctuations of the export gas (2). A second partial amount of the recycling gas (4) is fed to the export gas (2) as hot recycling gas (7) having a higher temperature than the cold recycling gas (6). Then an export gas mixture (8) of the cold recycling gas (6) and the hot recycling gas (7) is introduced into the reduction process (1), wherein the temperature of the export gas mixture (8) is higher than the temperature of the export gas (2). The temperature of the export gas (2) or of the export gas mixture (8) is set in such a way that temperature is higher than the dew point or dew point temperature of the export gas mixture.