Abstract:
A method to manufacture a steel product in a steelmaking plant including several different tools, the method including the definition of at least two manufacturing routes using different tools and the calculation of the expected level of CO2 emissions associated to each of this defined manufacturing routes.
Abstract:
A blast furnace for ironmaking production wherein iron ore is at least partly reduced by a reducing gas which is injected in the stack of the blast furnace. The blast furnace includes an external and an internal wall, having a thickness Tint, in contact with matters charged into the blast furnace. The thickness Tint of the internal wall is substantially constant above and below the injection area of a reducing gas.
Abstract:
A method for operating a blast furnace for producing of pig iron, includes the following steps
heating a first stream of steam in a first heater, before or after having been mixed with an oxygen source selected from oxygen and oxygen-enriched air, to provide a first heated stream of oxygen-enriched steam; heating a first stream of blast furnace gas from the blast furnace and a first stream of natural gas in a second heater, before or after being mixed together, to provide a heated carbon feed stream; feeding the first heated stream of oxygen-enriched steam and the heated carbon feed stream either as a combined stream or separately to a catalytic partial oxidation reactor to produce a stream of syngas; and feeding the stream of syngas to the shaft of the blast furnace.
Abstract:
In a method and a device for operating a smelting reduction process, at least part of an export gas from a blast furnace or a reduction unit is thermally utilized in a gas turbine and the exhaust gas of this gas turbine is used in a waste heat steam generator to generate steam. The remaining part of the export gas is fed to a CO2 separation apparatus, the tail gas thereby obtained being fed to a waste heat steam generator and burned for additional steam generation. The combustible components of the tail gas are sent for thermal utilization in a steam generator, so that the overall energy balance of the thermal use of the export gas is improved. In addition, a further part of the export gas is qualitatively improved by the CO2 separation apparatus, so as to generate a high-quality reduction gas which can be supplied for metallurgical use.
Abstract:
Included are: a direct reduction furnace for reducing iron ore directly into reduced iron using a high-temperature reducing gas including hydrogen and carbon monoxide, an acid gas removal unit having an acid gas component absorber for removing, with an absorbent such as an amine-based solvent, acid gas components (CO2, H2S) in a reduction furnace flue gas discharged from the direct reduction furnace, and a regenerator for releasing the acid gas, and a degradation product removal unit for separating and removing a degradation product in the absorbent used by circulating through the absorber and the regenerator.
Abstract:
A method of ironmaking using full-oxygen hydrogen-rich gas which includes hot transferring and hot charging the high-temperature coke, sinter and pellet into the ironmaking furnace through transferring and charging device, and injecting oxygen and hydrogen-rich combustible gas at a predetermined temperature into the ironmaking furnace through the oxygen tuyere and the gas tuyere disposed at the ironmaking furnace, respectively. It also provides an apparatus for ironmaking using full-oxygen hydrogen-rich gas which includes a raw material system, a furnace roof gas system, a coke oven gas injecting system, a dust injecting system, a slag dry-granulation and residual heat recovering system and an oxygen system. Additionally an apparatus and method for hot transferring and hot charging of ironmaking raw material is disclosed.
Abstract:
A blast furnace system is used wherein the coke rate is decreased by recycling upgraded top gas from the furnace back into its shaft section (which upgraded top gas is heated in a tubular heater prior to being recycled). The top gas, comprising CO, CO2 and H2, is withdrawn from the upper part of the blast furnace; cooled and cleaned of dust, water, and CO2 for increasing its reduction potential and is heated to a temperature above 850° C. before being recycled thus defining a first gas flow path used during normal operation of the blast furnace. Uniquely, a second gas flow path for continued circulation of top gas selectively through the heater and a cooler during operation interruptions of the blast furnace allows time for gradual controlled cool down of the heater in a manner to avoid heat-shock damage to the tubular heater.
Abstract:
A process for recycling blast furnace gas is provided. At least one portion of the gases resulting from the blast furnace undergo a CO2 purification step to create a CO-rich gas which is reinjected at a first top injection point at a temperature between 700° C. and 1000° C. through a top injection line, and at a second bottom injection point at a temperature between 1000° C. and 1300° C. through a bottom injection line. The gases from the bottom and top injection lines are heated at a temperature between 1000° C. and 1300° C. A portion of the CO-rich gas exiting the purification step is directly introduced into the top injection line via a cold gas injection line to obtain a temperature between 700° C. and 1000° C. at the first top injection point. The gas that flows through the bottom and top injection points controlled upstream of the system of the heaters. A device is also provided.
Abstract:
A process and an installation for reducing particulate material containing iron oxide are shown, wherein the material containing iron oxide is at least partially reduced with reducing gas in a reducing zone and the waste gas produced during the reduction is drawn off and subsequently subjected to CO2 cleaning in a CO2 separating device (1), in which a tail gas containing CO2 is separated. The tail gas is subjected to combustion and subsequent dewatering in a dewatering device (5), the substitute gas thereby formed being used as a substitute for inert gas.
Abstract:
Ironmaking method and installation with recirculation of exhaust gas as a reduction gas and whereby part of the exhaust gas is purged upstream and/or downstream of a CO/CO2 separation unit, said purged exhaust gas being subjected to a water gas shift reaction for H2 generation.
Abstract translation:炼铁方法和安装,作为还原气体的废气再循环,并且其中一部分废气在CO / CO 2分离单元的上游和/或下游被净化,所述净化的废气经受用于H2生成的水煤气变换反应 。