Abstract:
A sensor body of an electrostatic detection sensor includes a first electrode and a second electrode surrounding the first electrode. A controller is configured to obtain a first sensed intensity of the sensor body while where the first electrode is connected to the second electrode. The controller is configured to obtain a second sensed intensity of the first electrode while the second electrode is grounded. The controller is configured to obtain a third sensed intensity of the second electrode while the first electrode is grounded. The controller is configured to determine whether an object approaches the sensor body or not based on first to third calculation values obtained by calculating the respective changes of the first to third sensed intensities with respect to time.
Abstract:
An operation unit of an input device has an operation body having a closed-end tubular shape and provided to be rotatable relative to a device body, and a sensor body provided on the device body in the operation body. The operation body enables a touch operation onto operation face S formed on at least a top face part, and enables a rotating operation that is different from the touch operation by rotating relative to the device body while holding its side face. The sensor body includes a detection face that is capable of detecting the touch operation of a detection target in contact with operation face S, and a periphery of the detection face and a periphery of a top face part of the operation body overlap each other in a vertical direction.
Abstract:
The electrostatic detection sensor has a first electrode, a second electrode, and a third electrode. A controller connects the first electrode and the second electrode, and applies a first drive voltage thereto to obtain a first intensity. The controller applies a second drive voltage to the first electrode while keeping the second electrode and the third electrode at a ground potential to obtain a second intensity. The controller applies a third drive voltage to the third electrode while grounding the first electrode to the ground potential and keeping the second electrode open to obtain a third intensity. Then, the controller determines whether an object is approaching based on first, second, and third computed values which are computed temporal changes in the first, second, and third intensities, respectively.
Abstract:
A sensor device includes electrodes disposed in a detection region having plural segments such that the electrodes do not overlap each other. The plural segments are arranged in a matrix shape with plural, three or more rows and plural, three or more columns. Each of the electrodes is located on certain segments out of the plural segments. The certain segments are located certain rows out of the plural rows and certain columns out of the plural columns. When each of the segments in the detection region is operated, the electrodes output signals different from each other correspondingly to each of the plural segments. The sensor device can easily detect the operated position with a simple configuration.
Abstract:
A basic scan executing a bare-hand scan for determining whether or not an electrode of a capacitive sensor is manipulated with a bare hand and a gloved-hand scan for determining whether or not the electrode is manipulated with a gloved hand is executed, thereby determining which of the bare hand and the gloved hand the electrode is manipulated with. This detection method reduces erroneous detection of the capacitive sensor.