Abstract:
An optical disc information device is an optical disc information device for reproducing and/or recording information with respect to an optical disc including a track in the form of a groove, and capable of recording information in a land portion and in a groove portion of the groove. The optical disc information device includes a laser light source, an objective lens, a transmittance limiting element, a dividing element, a light detector, a central amplifier, at least two end amplifiers, a gain controller, an adder, a reproduction signal processor, and a control signal processor. The transmittance limiting element includes a first central region, and at least two first end regions which interpose the first central region therebetween, and attenuates light passing through at least the first end regions out of a light flux emitted from the laser light source more strongly than light passing through the first central region.
Abstract:
An illumination control method includes: causing an illumination apparatus to illuminate a predetermined space with light; and controlling at least one of a color temperature of light which the illumination apparatus emits and an illuminance of the light which the illumination apparatus emits in the predetermined space, to cause an integrated value to be at least 10 μW·h/cm2. The integrated value is a value resulting from integrating time and an effective amount of melatonin during a first time frame from 5:00 to 14:00.
Abstract:
A method for forming a crystal nucleus in a latent heat storage material contains a solvent and a dissolved substance. The solvent contains water as the main ingredient. The latent heat storage material retains latent heat in a supercooled state. The method includes: (a) separating out an anhydride of the dissolved substance by heating or cooling part of the latent heat storage material in the supercooled state; and (b) supplying a droplet comprising water to the anhydride, to terminate the supercooled state of the latent heat storage material, and make the latent heat storage material dissipate heat.
Abstract:
An RF hologram is divided in a direction perpendicular to a tangent line of an information track of an information recording surface of an optical disc, and includes a central region including an optical axis of laser light as well as a first end portion region and a second end portion region which sandwich the central region, the central region is formed by a binary diffraction grating and generates ±1 order diffracted light, the first end portion region is formed by a blazed diffraction grating and generates first +1 order diffracted light, the second end portion region is formed by a blazed diffraction grating and generates second +1 order diffracted light, and an RF light receiving element receives both the ±1 order diffracted light, the first +1 order diffracted light, and the second +1 order diffracted light.