摘要:
One embodiment includes: forwarding a particular packet through an Available Routing Construct (ARC) chain topology network. In one embodiment, this forwarding includes: sending the particular packet by each particular non-edge node on an arc of the plurality of arcs receiving the particular packet to each sibling on the arc that did not send the particular packet to said particular non-edge node, while not sending the particular packet if it was received from both siblings of said particular edge node; and sending the particular packet to a respective child node on a second arc of the plurality of arcs by each particular edge node of two edge nodes on the arc after receiving the particular packet. In one embodiment, the network is a wireless deterministic network with pre-assigned time slots for receiving and subsequently sending a same particular packet by each node of the network.
摘要:
One embodiment includes: forwarding a particular packet through an Available Routing Construct (ARC) chain topology network. In one embodiment, this forwarding includes: sending the particular packet by each particular non-edge node on an arc of the plurality of arcs receiving the particular packet to each sibling on the arc that did not send the particular packet to said particular non-edge node, while not sending the particular packet if it was received from both siblings of said particular edge node; and sending the particular packet to a respective child node on a second arc of the plurality of arcs by each particular edge node of two edge nodes on the arc after receiving the particular packet. In one embodiment, the network is a wireless deterministic network with pre-assigned time slots for receiving and subsequently sending a same particular packet by each node of the network.
摘要:
In one embodiment, an initial path is established in a wireless deterministic network between a source and a destination through one or more intermediate nodes, which are typically informed of a required metric between the source and the destination for communicating a packet. The initial path is locally (e.g., without contacting a path computation engine) reconfigured to bypass at least one of the intermediate nodes creating a new path, with the new path meeting the requirement(s) of the metric. Note, “locally reconfiguring” refers to the network nodes themselves determining a replacement path without reliance on a path computation engine or other entity (e.g., network management system, operating support system) in determining the replacement path. In one embodiment, a network node not on the initial path replaces a node on the initial path while using the same receive and send timeslots used in the initial path.
摘要:
In one embodiment, sensor data is transported in a network to a rendezvous point network node, which consolidates the information into a consolidated result which is communicated to the destination. Such consolidation by a network node reduces the number of paths required in the network between the sensors and the destination. One embodiment includes acquiring, by each of a plurality of originating nodes in a wireless deterministic network, external data related to a same physical event; communicating through the network said external data from each of the plurality of originating nodes to a rendezvous point network node (RP) within the network; processing, by the RP, said external data from each of the plurality of originating nodes to produce a consolidated result; and communicating the consolidated result to a destination node of the network. In one embodiment, the network is a low power lossy network (LLN).
摘要:
In one embodiment, a network of nodes is configured to communicate according to a configuration of Available Routing Construct (ARC) chains as well as monitoring communication in the network, and/or selectively controls whether or not provisioned particular links will be used. One embodiment colors nodes of the network (e.g., a wireless deterministic network) along different paths through the network and marks packets with the color of each traversed node to track a path taken by a packet. One embodiment sends a particular packet through the network and marks over which links the packet traverses and aggregates these traversed links of other copies of the particular packet. One embodiment controls whether or not the provisioned time slots are used based on flooding a control packet through the network with enable or disable information for each of these links.
摘要:
One embodiment allocates and uses exclusive and overlapping transmission units in a network. One embodiment includes sending information, from a first network node in a network, during an exclusive transmission unit, wherein the exclusive transmission unit includes one or more wireless time slot-frequency pairings assigned to the first network node to send info nation without another assigned network transmission unit providing overlapping time slot-frequency interference from another network node communicating in the network. One embodiment includes sending information, from the first network node, during an overlapping transmission unit, wherein the overlapping transmission unit includes one or more wireless time slot-frequency pairings assigned to the first network node to send information, with the overlapping transmission unit overlapping in time slot-frequency with one or more other assigned network transmission units that will cause interference if simultaneously used.
摘要:
A node in a Low power and Lossy Network (LLN) is managed by monitoring a routing configuration on a node in a LLN. A triggering parameter that is used to invoke an address change on a child node is tracked and a threshold against which to compare the triggering parameter is accessed. The triggering parameter is compared to the threshold. Based on results of comparing the triggering parameter to the threshold, it is determined that an address change at the child node is appropriate. An address change of a child node appearing in the routing configuration is invoked based on the determination that an address change is appropriate.
摘要:
In one embodiment, a node “N” within a computer network utilizing directed acyclic graph (DAG) routing selects a parent node “P” within the DAG, and, where P is not a DAG root, may determine a grandparent node “GP” as a parent node to the parent node P. The node N may then also select an alternate parent node “P′” that has connectivity to GP and N. N may then inform P and P′ about prefixes reachable via N, and also about P′ as an alternate parent node to P to reach the prefixes reachable via N. Also, in one embodiment, P may be configured to inform GP about the prefixes reachable via N and also about P′ as an alternate parent node to P to reach the prefixes reachable via N, and P′ may be configured to store the prefixes reachable via N without informing other nodes about those prefixes.
摘要:
In one embodiment, a network of nodes is configured to communicate according to a configuration of a vertical ladder topology as well as monitoring communication in the network, and/or selectively controls whether or not provisioned particular links will be used. One embodiment colors nodes of the network (e.g., a wireless deterministic network) along different paths through the network and marks packets with the color of each traversed node to track a path taken by a packet. One embodiment sends a particular packet through the network and marks over which links the packet traverses and aggregates these traversed links of other copies of the particular packet. One embodiment controls whether or not the provisioned time slots are used based on flooding a control packet through the network with enable or disable information for each of these links.
摘要:
In one embodiment, an initial path is established in a wireless deterministic network between a source and a destination through one or more intermediate nodes, which are typically informed of a required metric between the source and the destination for communicating a packet. The initial path is locally (e.g., without contacting a path computation engine) reconfigured to bypass at least one of the intermediate nodes creating a new path, with the new path meeting the requirement(s) of the metric. Note, “locally reconfiguring” refers to the network nodes themselves determining a replacement path without reliance on a path computation engine or other entity (e.g., network management system, operating support system) in determining the replacement path. In one embodiment, a network node not on the initial path replaces a node on the initial path while using the same receive and send timeslots used in the initial path.