摘要:
Devices and method are provided that facilitate improved input device performance. Specifically, the systems and methods are configured to identify a portion of an image of sensor values as corresponding to at least one sensed object in the sensing region, determine a polygon corresponding to the identified portion of the image, and determine a contact characterization of the at least one sensed object based on the polygon. The determination of a polygon corresponding to a sensed object facilitates improved contact characterization of the sensed object. For example, the determined polygon may be used to determine if the sensed object is actually more than one object. As a second example, the determined polygon may be used to determine the orientation of the sensed object. In addition, determined polygons may be used to more accurately track changes in the position of the sensed object.
摘要:
The embodiments described herein provide devices and methods that facilitate improved input devices. In one embodiment, an input device is configured to determine if a sensed object includes an occluded portion using an image representative of sensor values, determine a portion of the image corresponding to the sensed object, and approximate a boundary representation of the sensed object wherein if the sensed object does include the occluded portion, the boundary representation encompasses at least part of the occluded portion of the sensed object and at least part of a non-occluded portion of the sensed object. The determination of a boundary representation corresponding to a sensed object facilitates improved characterization of the sensed object. For example, the determined boundary representation may be used to more accurately track changes in the position of the sensed object as the sensed object moves out of the sensing region.
摘要:
Devices and method are provided that facilitate improved input device performance. Specifically, the systems and methods are configured to identify a portion of an image of sensor values as corresponding to at least one sensed object in the sensing region, determine a polygon corresponding to the identified portion of the image, and determine a contact characterization of the at least one sensed object based on the polygon. The determination of a polygon corresponding to a sensed object facilitates improved contact characterization of the sensed object. For example, the determined polygon may be used to determine if the sensed object is actually more than one object. As a second example, the determined polygon may be used to determine the orientation of the sensed object. In addition, determined polygons may be used to more accurately track changes in the position of the sensed object.
摘要:
The embodiments described herein provide devices and methods that facilitate improved input devices. In one embodiment, an input device is configured to determine if a sensed object includes an occluded portion using an image representative of sensor values, determine a portion of the image corresponding to the sensed object, and approximate a boundary representation of the sensed object wherein if the sensed object does include the occluded portion, the boundary representation encompasses at least part of the occluded portion of the sensed object and at least part of a non-occluded portion of the sensed object. The determination of a boundary representation corresponding to a sensed object facilitates improved characterization of the sensed object. For example, the determined boundary representation may be used to more accurately track changes in the position of the sensed object as the sensed object moves out of the sensing region.
摘要:
Embodiments for setting a data rate of encoded data of a transmitter are disclosed. One method includes determining a physical layer transmission rate based on a transmission link quality of a link, estimating a transmission throughput that can be transmitted over the link ensuring a level of Quality of Service (QOS) requirement, and the transmitter adjusting the data rate of the encoded data based on the estimated transmission throughput.
摘要:
A two-dimensional capacitive sensor device comprises first, second, and third sensor electrodes. The first sensor electrode has a varying width along a first direction, a maximum width at a first edge along the first direction, and a minimum width at a second edge along the first direction. The second sensor electrode has a varying width along the first direction and substantially identical widths at the first edge and second edge. The third sensor electrode has a varying width along the first direction, a minimum width at the first edge, and a maximum width at the second edge. The first, second, and third sensor electrodes have substantially equal surface area and are arranged in a first sensor cell with the second disposed between the first and third sensor electrodes. The two-dimensional capacitive sensor device comprises a plurality of sensor cells disposed in a repeated fashion in a single layer.
摘要:
Disclosed are systems and methods which provide interference mitigation by making alternative resources available within areas served by wireless communication links. Embodiments provide multiple channel availability in establishing wireless communication links to facilitate interference mitigation. Time domain techniques, spatial processing techniques, and/or frequency domain techniques may be implemented for spectrum management. Embodiments provide wireless base station configurations in which all or a plurality of base station sectors use a same frequency channel and/or in which each sector or a plurality of sectors use all frequency channels. Multi-channel strategies may be implemented such as to provide dynamic selection of a “best” frequency channel, to provide transmission of identical data on multiple channels for combining/selection at the receiver, and/or to provide for dividing the data for transmission on multiple channels.
摘要:
An input device is disclosed, including a first drive electrode comprising a resistive material and a first sense electrode disposed proximate to the first drive electrode. The input device further includes a processing system which is coupled with the first drive electrode and the first sense electrode. In one embodiment, the processing system is configured for electrically driving a first end of the first drive electrode and electrically driving a second end of the first drive electrode to cause a change in a voltage gradient along a length of the first drive electrode. In such an embodiment, the change in the voltage gradient generates a first electrical signal in the first sense electrode. The processing system also acquires a first measurement of the first electrical signal and determines positional information along the length of the first drive electrode based upon the first measurement, wherein the positional information is related to an input object.
摘要:
The embodiments described herein provide devices and methods that facilitate improved performance. Specifically, the devices and methods provide the ability to determine object information for objects causing deflection of a surface of a capacitive sensor device. The devices and methods are configured to determine an estimated deflection response associated with a deflection of the at least one sensing electrode using a set of sensor values, where the deflection was caused by one or more objects in contact with the input surface. The estimated deflection response at least partially accounts for effects of capacitive coupling with the object(s) in contact with the input surface, Object information may then be generated using the estimated deflection response. Where the input device is used to direct an electronic system the object information may be used to facilitate a variety of interface actions on a variety of different electronic systems.
摘要:
A device and method for of synchronizing a MAC superframe of a wireless device is disclosed. The wireless device can be located within a chain of a plurality of other wireless devices. The method includes receiving beacons from at least one other device during a superframe of the wireless device, determining a superframe offset for each of the other wireless devices based on timing of the received beacons, determining a corrective delay based on the superframe offsets, inserting the corrective delay within a current superframe of the wireless device, and inserting a predictive delay within the current superframe, the predictive delay being determined by an estimate of a difference between a frequency a clock of the wireless device and a frequency of a slowest clock of the other wireless devices within the chain.