摘要:
The layers and protocols of an air interface layering architecture are designed to be modular and can be modified and upgraded to support new features, perform complex tasks, and implement additional functionality. Prior to commencement of data communication between a first entity (e.g., an access terminal) and a second entity (e.g., a radio network), a set of layers and/or protocols is selected for negotiation. For each selected layer and protocol (i.e., each attribute), a list of attribute values considered acceptable to the first entity is determined. The selected attributes and their associated attribute values are sent from the first entity and, in response, a list of processed attributes and their associated lists of processed attribute values are received. Each list of processed attribute values includes attribute values considered acceptable to the second entity. The layers and protocols in the first entity are then configured in accordance with the received list of processed attributes and their associated processed attribute values. Other features related to configurable layers and protocols are also provided.
摘要:
The layers and protocols of an air interface layering architecture are designed to be modular and can be modified and upgraded to support new features, perform complex tasks, and implement additional functionality. Prior to commencement of data communication between a first entity (e.g., an access terminal) and a second entity (e.g., a radio network), a set of layers and/or protocols is selected for negotiation. For each selected layer and protocol (i.e., each attribute), a list of attribute values considered acceptable to the first entity is determined. The selected attributes and their associated attribute values are sent from the first entity and, in response, a list of processed attributes and their associated lists of processed attribute values are received. Each list of processed attribute values includes attribute values considered acceptable to the second entity. The layers and protocols in the first entity are then configured in accordance with the received list of processed attributes and their associated processed attribute values. Other features related to configurable layers and protocols are also provided.
摘要:
The layers and protocols of an air interface layering architecture are designed to be modular and can be modified and upgraded to support new features, perform complex tasks, and implement additional functionality. Prior to commencement of data communication between a first entity (e.g., an access terminal) and a second entity (e.g., a radio network), a set of layers and/or protocols is selected for negotiation. For each selected layer and protocol (i.e., each attribute), a list of attribute values considered acceptable to the first entity is determined. The selected attributes and their associated attribute values are sent from the first entity and, in response, a list of processed attributes and their associated lists of processed attribute values are received. Each list of processed attribute values includes attribute values considered acceptable to the second entity. The layers and protocols in the first entity are then configured in accordance with the received list of processed attributes and their associated processed attribute values. Other features related to configurable layers and protocols are also provided.
摘要:
A method and apparatus for performing an inter-system soft handoff is described. In accordance with the present invention, when a subscriber unit crosses from a first cellular system to a second cellular system, a base station controller determines if sufficient network resources are available to conduct a inter-system soft handoff. If so, the base station controller generates a set of signaling messages that cause call processing resource to be allocated and for the call to be processed at the second cellular system. The base station controller then perform data-selection and data-broadcast for the call by transmitting data to the subscriber unit by way of the second cellular system as well as via one or more base stations to which the base station controller is directly coupled. The determination as to whether sufficient network resources are available to conduct the inter-system soft handoff is based on the type of connection that exists between the first cellular system and the second cellular system, the number of inter-system calls being conducted, and the frame offset of the call currently being processed.
摘要:
Techniques to test performance of terminals and access points in CDMA data (e.g., cdma2000) systems. A framework of protocols and messages is provided to support systematic performance testing of terminals and to ensure interface compatibility. The framework comprises a Forward Test Application Protocol (FTAP) for testing forward channels and a Reverse Test Application Protocol (RTAP) for testing reverse channels. Techniques are also provided to (1) test different types of channels (e.g., traffic channels as well as auxiliary channels), (2) test bursty data transmissions, (3) support “persistence” testing (i.e., continued testing over connection and disconnection), (4) force the settings of certain auxiliary channels (e.g., so that the error rate of the channels may be determined), and (5) collect, log, and report various statistics that may be used to derive performance metrics such as throughput and packet error rate.
摘要:
Techniques to test performance of terminals and access points in CDMA data (e.g., cdma2000) systems. A framework of protocols and messages is provided to support systematic performance testing of terminals and to ensure interface compatibility. The framework comprises a Forward Test Application Protocol (FTAP) for testing forward channels and a Reverse Test Application Protocol (RTAP) for testing reverse channels. Techniques are also provided to (1) test different types of channels (e.g., traffic channels as well as auxiliary channels), (2) test bursty data transmissions, (3) support “persistence” testing (i.e., continued testing over connection and disconnection), (4) force the settings of certain auxiliary channels (e.g., so that the error rate of the channels may be determined), and (5) collect, log, and report various statistics that may be used to derive performance metrics such as throughput and packet error rate.
摘要:
Techniques to test performance of terminals and access points in CDMA data (e.g., cdma2000) systems. A framework of protocols and messages is provided to support systematic performance testing of terminals and to ensure interface compatibility. The framework comprises a Forward Test Application Protocol (FTAP) for testing forward channels and a Reverse Test Application Protocol (RTAP) for testing reverse channels. Techniques are also provided to (1) test different types of channels (e.g., traffic channels as well as auxiliary channels), (2) test bursty data transmissions, (3) support “persistence” testing (i.e., continued testing over connection and disconnection), (4) force the settings of certain auxiliary channels (e.g., so that the error rate of the channels may be determined), and (5) collect, log, and report various statistics that may be used to derive performance metrics such as throughput and packet error rate.
摘要:
In a communication system (1400) for communication of data, a method and apparatus provide for detecting a request for opening a connection for a user (1407) for communication of data, selecting an open connection, releasing the selected open connection, and allocating, to the user (1407), communication resources corresponding to resources released based on releasing the selected open connection. In accordance with an embodiment, the selected open connection is in an idle open state.
摘要:
Techniques for scheduling users for transmission on the uplink in a wireless communication system are described. A cell may perform interference cancellation for uplink transmissions and may observe lower effective noise and interference due to interference cancellation. The lower effective noise and interference may allow the cell to operate with a higher effective target load, which may support a higher overall throughput for the cell. In one design, an effective target load for a cell using interference cancellation may be determined, e.g., based on a target rise-over-thermal (RoT) for the cell and an interference cancellation efficiency factor. An available load for the cell may be determined based on the effective target load, which may be higher than a target load for the cell without interference cancellation. Users in the cell may then be scheduled for transmission on the uplink based on the available load.
摘要:
Techniques for scheduling users for transmission on the uplink in a wireless communication system are described. In one design, a total load for a cell may be determined based on a rise-over-thermal (RoT) measurement. An in-cell load for users served by the cell may be determined based on uplink transmissions received from these users. An outside load due to users in neighbor cells may be determined based on the total load and the in-cell load. A target total load for the cell may be determined based on a target RoT for the cell. An available load for the cell may be determined based on the target total load for the cell and the outside load. Users in the cell may be scheduled for transmission on the uplink based on the available load for the cell.