摘要:
A mold-tool assembly (100), comprising: a manifold assembly (102); and a constant-temperature heater assembly (99) being positioned relative to the manifold assembly (102), the constant-temperature heater assembly (99) being configured to convey, in use, a thermal-management fluid (109).
摘要:
A hot-runner system for use with an injection molding system, the hot-runner system including a hot-runner component, a material; and carbon nanotubes being combined with the material. The carbon nanotubes are dispersed, at least in part, in the material and the material includes a metal alloy. The carbon nanotubes are dispersed in the metal alloy, so that the metal alloy and the carbon nanotubes are combined to form a CNT-metal composite material.
摘要:
A hot-runner system for use with an injection molding system, the hot-runner system including a hot-runner component, a material; and carbon nanotubes being combined with the material. The carbon nanotubes are dispersed, at least in part, in the material and the material includes a metal alloy. The carbon nanotubes are dispersed in the metal alloy, so that the metal alloy and the carbon nanotubes are combined to form a CNT-metal composite material.
摘要:
A mold-tool system comprising: a manifold assembly, including: a manifold body defining: an inlet assembly; outlets being set apart from the inlet assembly; and uninterrupted melt channels extending between the inlet assembly and the outlets.
摘要:
A mold-tool system comprising: a manifold assembly, including: a manifold body defining: an inlet assembly; outlets being set apart from the inlet assembly; and uninterrupted melt channels extending between the inlet assembly and the outlets.
摘要:
A mold-tool system is provided which includes a manifold body including an inlet assembly, a plurality of outlets spaced from the inlet assembly, and an uninterrupted melt channel associated with each outlet and extending between the inlet assembly and its associated outlets. Each melt channel may have a length which is substantially identical to the length of the other melt channels.
摘要:
A mixer method and apparatus for use generally in injection molding machines is provided. The apparatus and method is generally comprised of a mixer insert that retains a mixing element that is sealingly inserted in the injection molding machine, for example a hot runner manifold. The mixing element reduces the melt imbalances in a flowing melt stream for the formation of improved molded parts.
摘要:
Disclosed is a hot-runner system of an injection molding system, the hot-runner system comprising a hot-runner component, including: a material, and a nano-structured material being combined with the material.
摘要:
A manifold system (50) comprising a main manifold (56) with a plurality of arms (64), a plurality of sub-manifolds (52) spaced from the main manifold (56) and communicating with the main manifold (56) through a plurality of melt transfer bushings (68) disposed between the main manifold (56) and the sub-manifolds (52). The melt transfer bushings (68) may include static mixers (140) to homogenize the melt. An air plate (70) is disposed between a backing plate (58) preferably housing the main manifold (56) and a manifold plate (54) preferably housing the sub-manifolds (52). The air plate (70) has a plurality of air channels (74) that communicate with valve gate nozzle actuators (90), which are received in actuator cavities (72) in the air plate (70). The air plate (70) is bolted to the manifold plate (54), and the backing plate (58) is bolted to the air plate (70) with bolting patterns not constrained by location of the main manifold (56) or sub-manifolds (52). The manifold system (50), as shown in FIG. 5, has better thermal and geometric balance, closer nozzle spacing, and better bolting for less plate bowing.
摘要:
A manifold system (50) comprising a main manifold (56) with a plurality of arms (64), a plurality of sub-manifolds (52) spaced from the main manifold (56) and communicating with the main manifold (56) through a plurality of melt transfer bushings (68) disposed between the main manifold (56) and the sub-manifolds (52). The melt transfer bushings (68) may include static mixers (140) to homogenize the melt. An air plate (70) is disposed between a backing plate (58) preferably housing the main manifold (56) and a manifold plate (54) preferably housing the sub-manifolds (52). The air plate (70) has a plurality of air channels (74) that communicate with valve gate nozzle actuators (90), which are received in actuator cavities (72) in the air plate (70). The air plate (70) is bolted to the manifold plate (54), and the backing plate (58) is bolted to the air plate (70) with bolting patterns not constrained by location of the main manifold (56) or sub-manifolds (52). The manifold system (50), as shown in FIG. 5, has better thermal and geometric balance, closer nozzle spacing, and better bolting for less plate bowing.