摘要:
Hot-runner system (100) for use with molding system. Hot-runner system (100) having: heater (102) to generate heat responsive to receiving power. Heat-sourcing component (104) to receive heat from the heater (102) so that the heat that is generated by the heater (102) is transferred, at least in part, from heater (102) to heat-sourcing component (104). Heat-sourcing component (104) becomes heated to an operating temperature. Heat-receiving component (106) being at least partially spaced from the heat-sourcing component (104). The operating temperature of the heat-receiving component (106) being cooler than operating temperature of the heat-sourcing component (104). Non-structurally supportive heat insulator (108) has thermal conductivity being lower than thermal conductivity of air during operation of the hot-runner system (100). Whereby, in use, non-structurally supportive heat insulator (108): (i) reduces heat transmission from heat-sourcing component (104) to heat-receiving component (106), and (ii) permits reduction of power consumption of heater (102).
摘要:
A hot-runner system for use with an injection molding system, the hot-runner system including a hot-runner component, a material; and carbon nanotubes being combined with the material. The carbon nanotubes are dispersed, at least in part, in the material and the material includes a metal alloy. The carbon nanotubes are dispersed in the metal alloy, so that the metal alloy and the carbon nanotubes are combined to form a CNT-metal composite material.
摘要:
Hot-runner system (100) for use with molding system. Hot-runner system (100) having: heater (102) to generate heat responsive to receiving power. Heat-sourcing component (104) to receive heat from the heater (102) so that the heat that is generated by the heater (102) is transferred, at least in part, from heater (102) to heat-sourcing component (104). Heat-sourcing component (104) becomes heated to an operating temperature. Heat-receiving component (106) being at least partially spaced from the heat-sourcing component (104). The operating temperature of the heat-receiving component (106) being cooler than operating temperature of the heat-sourcing component (104). Non-structurally supportive heat insulator (108) has thermal conductivity being lower than thermal conductivity of air during operation of the hot-runner system (100). Whereby, in use, non-structurally supportive heat insulator (108): (i) reduces heat transmission from heat-sourcing component (104) to heat-receiving component (106), and (ii) permits reduction of power consumption of heater (102).
摘要:
Disclosed is a hot-runner system of an injection molding system, the hot-runner system comprising a hot-runner component, including: a material, and a nano-structured material being combined with the material.
摘要:
A method of manufacturing a variety of injection molding hot runner system components using two materials. Blanks for portions of the components are formed of each material and fused, preferably by electron beam welding, then the component having the two portions is machined to its final configuration. Components made with this process include nozzle tip components such as tips, tip retainers, and tip inserts, as well as manifold bushings, valve stems and nozzle housings.
摘要:
A method of manufacturing a variety of injection molding hot runner system components using two materials. Blanks for portions of the components are formed of each material and fused, preferably by electron beam welding, then the component having the two portions is machined to its final configuration. Components made with this process include nozzle tip components such as tips, tip retainers, and tip inserts, as well as manifold bushings, valve stems and nozzle housings.
摘要:
An injection molding apparatus providing a supply of flowable material to a mold cavity, the apparatus having a hot runner system comprising a sealing member located between two manifolds that concentrates the sealing pressure adjacent the melt channels.
摘要:
A method of manufacturing a variety of injection molding hot runner system components using two materials. Blanks for portions of the components are formed of each material and fused, preferably by electron beam welding, then the component having the two portions is machined to its final configuration. Components made with this process include nozzle tip components such as tips, tip retainers, and tip inserts, as well as manifold bushings, valve stems and nozzle housings.
摘要:
A hot-runner system for use with an injection molding system, the hot-runner system including a hot-runner component, a material; and carbon nanotubes being combined with the material. The carbon nanotubes are dispersed, at least in part, in the material and the material includes a metal alloy. The carbon nanotubes are dispersed in the metal alloy, so that the metal alloy and the carbon nanotubes are combined to form a CNT-metal composite material.
摘要:
A method of manufacturing a variety of injection molding hot runner system components using two materials. Blanks for portions of the components are formed of each material and fused, preferably by electron beam welding, then the component having the two portions is machined to its final configuration. Components made with this process include nozzle tip components such as tips, tip retainers, and tip inserts, as well as manifold bushings, valve stems and nozzle housings.