摘要:
The invention relates to an open magnetic resonance imaging (MRI) magnet system (1) for use in a medical imaging system. The open MRI magnet system has two main coil units which are accomodated, at some distance from each other, in a first housing (2) and in a second housing (3), respectively. Between the two housings, an imaging volume (6) is present wherein a patient to be examined is placed. A gradient coil unit (9, 10) facing the imaging volume is present near a side of each of the two housings. Functional connections of the gradient coil units (9, 10), such as electrical power supply lines (13, 14) and cooling channels (15, 16) are provided in a central passage (4, 5) which is present in each of the two housings. As a result, these functional connections do not reduce the space in the imaging volume available for the patient. The central passages and the electrical power supply lines provided therein are parallel to the direction of the main magnetic field of the open MRI magnet system, so that the Lorentz forces exerted on the power lines are limited.
摘要:
The invention relates to a magnetic resonance imaging (MRI) system (1) comprising an examination volume (11), a main magnet system (17) for generating a magnetic field (B0) in the examination volume, and a gradient magnet system (25) for generating altering gradients of the magnetic field in the examination volume. The gradient magnet system is accommodated in a housing (31) having a main wall (33) facing the examination volume and a substantially conical wall (35) facing away from the examination volume. The main wall and the conical wall enclose a substantially angular tip portion (47) of the housing. In order to limit the level of the acoustic vibrations in and around the MRI system (1) caused by mechanical vibrations of the angular tip portion (47), the MRI system comprises a plurality of acoustic resonators (55) which each comprise an elongate resonance volume (57) with an open end (59) and a closed end (61) and a length (L) between the open end and the closed end. The open ends of the resonators are arranged near the angular tip portion, and the length of the resonators is substantially equal to 0,25 k*(, wherein k=1, 3, 5, 7, . . . , and wherein (is the wavelength of an acoustic wave caused by mechanical vibrations of the angular tip portion. The resonators have the acoustic property of neutralizing acoustic waves having said wavelength (. Preferably, the length of the resonators is tuned to at least one of the wavelengths corresponding to the mechanical resonance frequencies of the vibrating angular tip portion, as the acoustic waves originating from the vibrations at these resonance frequencies constitute a main portion of the overall acoustic level of the MRI system.
摘要:
The invention relates to a magnetic resonance imaging (MRI) system (1) comprising an examination volume (11), a main magnet system (13) for generating a main magnetic field (B0) in the examination volume in a Z-direction, a gradient magnet system (19) for generating gradients of the main magnetic field, and an anti-vibration system (33) for reducing vibrations of the gradient magnet system caused by a mechanical load (MX, MY) exerted on the gradient magnet system as a result of electromagnetic interaction between the main magnetic field and electrical currents in the gradient magnet system. According to the invention the anti-vibration system (33) comprises a balance member (39), which is coupled to the gradient magnet system (19) by means of an actuator system (51) and a coupling device (49) allowing displacements of the balance member relative to the gradient magnet system. The MRI system (1) also has a control system (81) which controls the actuator system in such a manner that the actuator system exerts upon the balance member a compensating mechanical load (MCX, MCY) which substantially corresponds to the mechanical load (MX, MY) exerted on the gradient magnet system. As a result, the actuator system exerts a mechanical reaction load (MRX, MRY) on the gradient magnet system which has the same magnitude as but is oppositely directed to the mechanical load (MX, MY) exerted on the gradient magnet system, so that vibrations of the gradient magnet system are effectively limited.
摘要:
The invention relates to an MRI system (1) comprising an examination volume (11), a main magnet system (13) for generating a main magnetic (field (B0) in the examination volume, a gradient magnet system (19) for generating gradients of the main magnetic field, and an anti-vibration system (39) for reducing vibrations of the gradient magnet system. According to the invention the anti-vibration system comprises a gyroscope (41) which is mounted to the gradient magnet system. As a result of the gyroscopic effect of the gyroscope, the vibrations of the gradient magnet system are effectively reduced. In an open type MRI system (1) according to the invention, a separate gyroscope (41, 43) is mounted to each of the two portions (21, 23) of the gradient magnet system (19), and each gyroscope has an axis of rotation (61) parallel to the main direction (Z) of the main magnetic field (B0).
摘要:
A magnetic resonance imaging method comprises application of a pulse sequence which includes one or more pulses. The pulse sequence having an intrinsic scan time based on a full sampling rate in k-space for a predetermined full ‘field-of-view’ and a reference temporal pulse shape of the magnetic gradient pulses. A series of magnetic resonance signals is acquired by means of a receiver antennae system having a spatial sensitivity profile. Undersampled signal acquisition is applied to acquire undersampled magnetic resonance signals at a predetermined reduced sampling rate in k-space, the sampling rate being reduced by a reduction factor relative the full sampling rate. The pulse sequence being is during an actual signal scan time is applied. The actual signal scan time being larger than the intrinsic signal scan time times the reduction factor. The undersampling allows a smaller acquisition rate of the magnetic resonance signals and smaller slew rates and amplitudes of the magnetic gradient pulses and lower peak RF-fields of the refocusing pulses. Hence, lower acoustic noise and lower specific absorption rate are achieved.
摘要:
The invention relates to an MR apparatus (1) having an examination volume (6) of the open type such that the examination volume (6) is also accessible laterally, having main coil devices (2) for producing a main magnetic field that are disposed on two opposite sides of the examination volume (6), having at least one high-frequency coil device (5) for exciting the proton precession and having at least one two-part gradient coil device (4), disposed on opposite sides of the examination volume (6), for the positional coding of the excitation of the proton precession. The dynamic Lorentz forces have hitherto resulted in a high oscillation level. It is an object of the invention to provide an MR apparatus (1) that has only a low oscillation level. The invention proposes that, on at least one side of the examination volume (6), a central recess (7) extends from the examination volume (6) and through the main coil device (2), in which recess (7) a holding element (9) is disposed to whose side facing the examination volume (6) the gradient coil device (4) is exclusively attached.
摘要:
A therapeutic apparatus comprising a radiotherapy apparatus for treating a target zone and a magnetic resonance imaging system for acquiring magnetic resonance imaging data. The radiotherapy apparatus comprises a radiotherapy source for directing electromagnetic radiation into the target zone. The radiotherapy apparatus is adapted for rotating the radiotherapy source at least partially around the magnetic resonance magnet. The magnetic resonance imaging system further comprises a radio-frequency transceiver adapted for simultaneously acquiring the magnetic resonance data from at least two transmit-and-receive channels. The therapeutic apparatus further comprises a processor and a memory containing machine executable instructions for the processor. Execution of the instructions causes the processor to: calibrate the transmit-and-receive channels; acquire the magnetic resonance data; reconstruct a magnetic resonance image; register a location of the target zone in the image; and generate radiotherapy control signals using the registered image.
摘要:
A magnetic resonance method of electric properties tomography imaging of an object includes applying an excitation RF field to the object via a coil at a first spatial coil position (402), acquiring resulting magnetic resonance signals via a receiving channel from the object, determining from the acquired magnetic resonance signals a first phase distribution and a first amplitude of a given magnetic field component of the excitation RF field of the coil at the first coil position (402), repeating these steps with a coil at a second different spatial coil position (404), to obtain a second phase distribution, determining a phase difference between the first and second phase distribution, determining a first and a second complex permittivity of the object, the first complex permittivity comprising the first amplitude of the given magnetic field component and the second complex permittivity comprising the second amplitude of the given magnetic field component and the phase difference, equating the first complex permittivity and the second complex permittivity for receiving a final equation and determining from the final equation a phase of the given magnetic field component for the first coil position (402).
摘要:
A magnetic resonance sequence includes a repetitively applied radiofrequency pulse capable of causing a specific absorption rate (SAR) hot spot. The composition of the repetitive pulse is varied to generate versions of the repetitive pulse such that the SAR hot spot changes locations with subsequent applications of the repetitive pulse. To generate versions of the pulse, a pilot scan is performed to generate a patient model. A simulation of the SAR response to each of the versions of the repetitive pulse is performed to determine the location of SAR hot spot(s). A plurality of versions of the repetitive pulse is selected to be used in the magnetic resonance sequence.
摘要:
In a method and apparatus to enable increased RF duty cycle in high field MR scans, a specific energy absorption rate (SAR) calculation processor calculates the local and global SAR or even a spatial SAR map. By incorporating additional information as, e.g. patient position, the SAR calculation accuracy can be increased as well as by using more patient specific pre-calculated information (e.g. based on different bio meshes), the so called Q-matrices. A sequence controller maybe provided to create a global SAR optimal RF pulse. After the optimal RF pulse is applied, the SAR and its spatial distribution are determined. SAR hotspots are also determined. Q-matrices within an appropriate radius around the hotspots are averaged and added to a global Q-matrix in a weighted fashion. After the global Q-matrix is updated, a new optimal RF pulse is created.