摘要:
A therapeutic apparatus comprising: a magnetic resonance imaging system adapted for acquiring a set of magnetic resonance imaging data in an imaging zone, the magnetic resonance imaging system comprising a means for generating a magnetic field, —a guiding means adapted for guiding a beam of charged particles to a target zone within a subject, wherein the imaging zone comprises the target zone, a zone determination means adapted for determining the location of the target zone within the subject using the set of magnetic resonance imaging data, a trajectory calculation means adapted for calculating a trajectory of the beam using magnetic field data being descriptive of the magnetic field such that the calculated trajectory reaches the target zone, a control means adapted for controlling the guiding means using the calculated trajectory such that the beam follows the calculated trajectory.
摘要:
The invention provides for a therapeutic apparatus comprising a tissue heating system (302, 480, 482). The therapeutic apparatus further comprises a magnetic resonance imaging system (300) for acquiring magnetic resonance thermometry data (366) from nuclei of a subject (318) located within an imaging volume (330). The therapeutic apparatus further comprises a radiation therapy system (304, 592) for irradiating an irradiation volume (316, 516) of the subject, wherein the irradiation volume is within the imaging volume. The therapeutic apparatus further comprises a controller (354) for controlling the therapeutic apparatus. The controller is adapted for acquiring (100, 210) magnetic resonance thermometry data repeatedly using the magnetic resonance imaging system. The controller is adapted for heating (102, 208) at least the irradiation volume using the tissue heating system. The heating is controlled using the magnetic resonance thermometry data. The controller is adapted for irradiating (104, 208) the irradiation volume.
摘要:
A radiation therapy system comprises: a radiation therapy subsystem (20, 22, 32) configured to perform radiation therapy by applying radiation pulses to a region of a subject at pulse intervals (Tpi); a magnetic resonance (MR) imaging subsystem (10, 16, 30, 36) configured to acquire a dataset of MR imaging data samples from the region of the subject over one or more MR sampling intervals (TAQ) that are longer than the pulse intervals, the one or more MR sampling intervals overlapping at least some of the pulse intervals; a synchronizer (40) configured to identify MR imaging data samples of the dataset whose acquisition times overlap pulse intervals; and a reconstruction processor (44) configured to reconstruct the dataset without the measured values for the MR imaging data samples identified as having acquisition times overlapping pulse intervals to generate a reconstructed MR image.
摘要:
A magnetic resonance imaging system comprises a signal acquisition system to acquire magnetic resonance signals. A reconstructor reconstructs magnetic resonance images from the acquired magnetic resonance signals. The signal acquisition system and/or the reconstructor are controlled to perform overhead activities separately from actual acquisition of the magnetic resonance signals notably for different contrast types. Accordingly, time efficient signal acquisition for multiple contrasts is achieved.
摘要:
The invention relates to a vertical field type MRI apparatus provided with a superconducting coil system 20a, 20b for generating a substantially homogeneous magnetic field in an imaging volume 18 of the apparatus. The coil system includes a circular outer coil 28 and a supplementary coil 30 which is positioned in the same plane 32 as and within the outer coil, which coils conduct opposite currents. The ratio Da/Do of the diameter Da of the supplementary coil to the diameter Do of the outer coil lies between 0,7 and 0,9. Further coils 34 to 38, 40 to 46 for making the field even more homogeneous are preferably located on a conical surface 48, 50 within the first mentioned coils 28, 30 in such a manner that a recess is formed in which a conically shaped gradient coil system 52 can be accommodated, with the result that the expensive outer coil 28 and the supplementary coil 30 can be arranged at an as short as possible distance from the space for receiving the patient to be examined.
摘要:
A vertical field type MRI apparatus is provided with a superconducting coil system for generating a substantially homogeneous magnetic field in an imaging volume of the apparatus. The coil system includes a circular outer coil and a supplementary coil which is positioned in the same plane as and within the outer coil, which coils conduct opposite currents. The ratio Da/Do of the diameter Da of the supplementary coil to the diameter Do of the outer coil lies between 0.7 and 0.9. Further coils for making the field more homogeneous are preferably located on a conical surface within the circular outer coil and supplementary coil in such a manner that a recess is formed in which a conically shaped gradient coil system can be accommodated, with the result that the expensive outer coil and the supplementary coil can be arranged at an as short as possible distance from the space for receiving the patient to be examined.
摘要:
A therapeutic apparatus comprising: a magnetic resonance imaging system adapted for acquiring a set of magnetic resonance imaging data in an imaging zone, wherein the magnetic resonance imaging system comprises a means for generating a magnetic field, a guiding means adapted for guiding a beam of charged particles to a target zone within a subject such that the beam encloses an angle with the magnetic field lines of the magnetic field within the imaging zone, the angle being between 0 degrees and 30 degrees, wherein the imaging zone comprises the target zone, a zone determination means for determining the location of the target zone within the subject using the set of magnetic resonance imaging data.
摘要:
A method of correcting a magnetic field of an MRI radiotherapy apparatus (300) includes a magnetic resonance imaging system (302) and a radiation therapy system (304). The MRI system includes a magnet (306) for generating the magnetic field within an imaging zone 318. The magnet generates a magnetic field with a zero crossing (346, 404) outside of the imaging zone. The medical apparatus further comprises a gantry (332) configured for rotating a ferromagnetic component (336, 510) about a rotational axis (333). The method comprises the step of installing (100, 200) a magnetic correcting element (348, 900, 1000) located on a radial path (344, 504) perpendicular to the rotational axis. The magnetic correcting element is positioned on the radial path such that change in the magnetic field within the imaging zone due to the ferromagnetic component is reduced. The method further comprises repeatedly: measuring (102, 202, 1204) the magnetic field within the imaging zone; determining (104, 204, 1206) the change in the magnetic field in the imaging zone; and adjusting (106, 206, 1208) the position of the magnetic correcting element along the radial path if the change in the magnetic field is above a predetermined threshold.
摘要:
A method of correcting a magnetic field of an MRI radiotherapy apparatus (300) comprising a magnetic resonance imaging system (302) and a radiation therapy system (304). The MRI system includes a magnet (306) for generating the magnetic field within an imaging zone 318. The magnet generates a magnetic field with a zero crossing (346, 404) outside of the imaging zone. The medical apparatus further comprises a gantry (332) configured for rotating a ferromagnetic component (336, 510) about a rotational axis (333). The method comprises the step of installing (100, 200) a magnetic correcting element (348, 900, 1000) located on a radial path (344, 504) perpendicular to the rotational axis. The magnetic correcting element is positioned on the radial path such that change in the magnetic field within the imaging zone due to the ferromagnetic component is reduced. The method further comprises repeatedly: measuring (102, 202, 1204) the magnetic field within the imaging zone; determining (104, 204, 1206) the change in the magnetic field in the imaging zone; and adjusting (106, 206, 1208) the position of the magnetic correcting element along the radial path if the change in the magnetic field is above a predetermined threshold.
摘要:
A therapeutic apparatus comprising: a magnetic resonance imaging system adapted for acquiring a set of magnetic resonance imaging data in an imaging zone, the magnetic resonance imaging system comprising a means for generating a magnetic field, a guiding means adapted for guiding a beam of charged particles to a target zone within a subject, wherein the imaging zone comprises the target zone, a zone determination means adapted for determining the location of the target zone within the subject using the set of magnetic resonance imaging data, a trajectory calculation means adapted for calculating a trajectory of the beam using magnetic field data being descriptive of the magnetic field such that the calculated trajectory reaches the target zone, a control means adapted for controlling the guiding means using the calculated trajectory such that the beam follows the calculated trajectory.