摘要:
The present invention relates to methods and arrangements in a multi-antenna radio communication system, in particular to methods and arrangements for improved multiple HARQ transmission in such systems. While HARQ transmission schemes, as known in the art, only can consider the fact whether or not a transmission attempt has been successful the present invention provides a HARQ retransmission scheme that considers the reception quality for already performed transmissions of a same data packet when selecting a resource allocation for necessary re-transmissions. Resource allocation for retransmissions is based on a pre-defined metric indicating a quality of the reception of the previous transmission attempts. Such a metric can be derived from a quality measure derived in the receiver unit, e.g. a CQI or CSI-based value, or an appropriate measure of the mutual information, e.g. the accumulated conditional mutual information (ACMI).
摘要:
The present invention relates to methods and arrangements in a multi-antenna radio communication system, in particular to methods and arrangements for improved multiple HARQ transmission in such systems. While HARQ transmission schemes, as known in the art, only can consider the fact whether or not a transmission attempt has been successful the present invention provides a HARQ retransmission scheme that considers the reception quality for already performed transmissions of a same data packet when selecting a resource allocation for necessary re-transmissions. Resource allocation for retransmissions is based on a pre-defined metric indicating a quality of the reception of the previous transmission attempts. Such a metric can be derived from a quality measure derived in the receiver unit, e.g. a CQI or CSI-based value, or an appropriate measure of the mutual information, e.g. the accumulated conditional mutual information (ACMI).
摘要:
In a method of improved channel-dependent time- and frequency-domain scheduling in an OFDM based telecommunication system with multiple user terminals, determining SO a parameter value representative of the system load; pre-selecting SI a subset of user terminals if the determined parameter value is larger than or equal to a predetermined threshold; and performing S2 frequency-domain scheduling of the pre-selected subset, to reduce the downlink signaling overhead and enabling improved efficiency of the channel-dependent time- and frequency-domain scheduling.
摘要:
The invention relates to control of link resources in a wireless telecommunications system, in which instant channel feedback information is transmitted from a mobile terminal in response to receipt of a selection message from a basestation, and the instant channel feedback information is used for real-time resource allocation and adaptation at the basestation.
摘要:
The invention relates to control of link resources in a wireless telecommunications system, in which instant channel feedback information is transmitted from a mobile terminal in response to receipt of a selection message from a basestation, and the instant channel feedback information is used for real-time resource allocation and adaptation at the basestation.
摘要:
In a method of improved channel-dependent time- and frequency-domain scheduling in an OFDM based telecommunication system with multiple user terminals, determining SO a parameter value representative of the system load; pre-selecting SI a subset of user terminals if the determined parameter value is larger than or equal to a predetermined threshold; and performing S2 frequency-domain scheduling of the pre-selected subset, to reduce the downlink signaling overhead and enabling improved efficiency of the channel-dependent time- and frequency-domain scheduling.
摘要:
A method of allocating resources in a wireless multi-user network is disclosed, comprising the following steps: —performing a proportional fair scheduling in time and frequency domain based on the bitrate for each user and the channel quality measurements for each chunk per user; and—performing a power allocation in the following way: o if the traffic load is above a threshold: allocating the uniform power to all subcarriers o if the traffic load is below the threshold, adapting a channel-dependent power allocation scheme.
摘要:
In a radio network a determination is made whether to implement cyclical delay diversity (CDD) for a radio frequency connection involving a radio base station (26) and a wireless terminal (30). The determination whether to implement cyclical delay diversity (CDD) is made in accordance with interference distribution at the wireless terminal (30), as such interference distribution is measured or otherwise perceived. When a determination is made to implement the cyclical delay diversity for the connection, plural transmit antennas (38) of the radio base station (26) are employed to implement the cyclical delay diversity for the connection. One or more indications of the interference distribution may be received and used to make the determination. The indication(s) of interference distribution can take the form of information received from the wireless terminal, and/or the form of frequency reuse plan information for interfering cells. For example, the determination to implement the cyclical delay diversity can be made affirmatively if the frequency reuse for interfering cells is above a predetermined frequency reuse number. In differing embodiments, either the radio base station (26) or the wireless terminal (30) can make the CDD implementation determination.
摘要:
Resources in a multi-cellular wireless communication system are scheduled. A beam pattern associated with at least one mobile terminal located within one of the cells is identified and assigned to a slot, providing at least one stream to said at least one mobile terminal. At least one other mobile terminal located within said cell having the same beam pattern associated therewith as that of said identified beam pattern to be served during said slot is scheduled. The assigned beam pattern in said cell is communicated to at least one interfering cell.
摘要:
Resources in a multi-cellular wireless communication system are scheduled. A beam pattern associated with at least one mobile terminal located within one of the cells is identified and assigned to a slot, providing at least one stream to said at least one mobile terminal. At least one other mobile terminal located within said cell having the same beam pattern associated therewith as that of said identified beam pattern to be served during said slot is scheduled. The assigned beam pattern in said cell is communicated to at least one interfering cell.