摘要:
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.
摘要:
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.
摘要:
Methods for abatement of antimony-containing, arsenic-containing and/or phosphorous-containing impurities in fuel gas that is derived from a carbonaceous source can include contacting the fuel gas with an absorbent comprising a capture compound. The capture compound has one or more alkali metals, one or more alkaline earth metals, or a combination of one or more alkali and alkaline earth metals. The fuel gas impurities are reacted with the capture compound, which can be used alone or dispersed on the adsorbent, at a temperature greater than or equal to approximately 300° C. to form solid capture products comprising antimony, arsenic, or phosphorous and the alkali or alkaline earth metal.
摘要:
A process for liquefying a process gas comprising: introducing a heat transfer fluid into an active magnetic regenerative refrigerator apparatus that comprises (i) a high magnetic field section in which the heat transfer fluid flows from a cold side to a hot side through at least one magnetized bed of at least one magnetic refrigerant, (ii) a first no heat transfer fluid flow section in which the bed is demagnetized, (iii) a low magnetic or demagnetized field section in which the heat transfer fluid flows from a hot side to a cold side through the demagnetized bed, and (iv) a second no heat transfer fluid flow section in which the bed is magnetized; continuously diverting a bypass portion of the heat transfer fluid from the cold side of the low magnetic or demagnetized field section into a bypass flow heat exchanger at a first cold inlet temperature; and continuously introducing the process gas into the bypass flow heat exchanger at a first hot inlet temperature and discharging the process gas or liquid from the bypass flow heat exchanger at a first cold exit temperature; wherein the temperature difference between bypass heat transfer first cold inlet temperature and the process gas first cold exit temperature is 1 to 5 K.
摘要:
A process for liquefying a process gas comprising: introducing a heat transfer fluid into an active magnetic regenerative refrigerator apparatus that comprises (i) a high magnetic field section in which the heat transfer fluid flows from a cold side to a hot side through at least one magnetized bed of at least one magnetic refrigerant, (ii) a first no heat transfer fluid flow section in which the bed is demagnetized, (iii) a low magnetic or demagnetized field section in which the heat transfer fluid flows from a hot side to a cold side through the demagnetized bed, and (iv) a second no heat transfer fluid flow section in which the bed is magnetized; continuously diverting a bypass portion of the heat transfer fluid from the cold side of the low magnetic or demagnetized field section into a bypass flow heat exchanger at a first cold inlet temperature; and continuously introducing the process gas into the bypass flow heat exchanger at a first hot inlet temperature and discharging the process gas or liquid from the bypass flow heat exchanger at a first cold exit temperature; wherein the temperature difference between bypass heat transfer first cold inlet temperature and the process gas first cold exit temperature is 1 to 5 K.
摘要:
An apparatus comprising: an active magnetic regenerative regenerator comprising multiple successive layers, wherein each layer comprises an independently compositionally distinct magnetic refrigerant material having Curie temperatures 18-22 K apart between successively adjacent layers, and the layers are arranged in successive Curie temperature order and magnetic refrigerant material mass order with a first layer having the highest Curie temperature layer and highest magnetic refrigerant material mass and the last layer having the lowest Curie temperature layer and lowest magnetic refrigerant material mass.
摘要:
A process for liquefying hydrogen gas into liquid hydrogen that includes: continuously introducing hydrogen gas into an active magnetic regenerative refrigerator module, wherein the module has one, two, three or four stages, wherein each stage includes a bypass flow heat exchanger that receives a bypass helium heat transfer gas from a cold side of a low magnetic or demagnetized field section that includes a magnetic refrigerant bed at a hydrogen gas first cold inlet temperature and discharges hydrogen gas or fluid at a first cold exit temperature; wherein sensible heat of the hydrogen gas is entirely removed by the bypass flow heat exchanger in the one stage module or a combination of the bypass flow heat exchangers in the two, three or four stage module, the magnetic refrigerant bed operates at or below its Curie temperature throughout an entire active magnetic regeneration cycle, and a temperature difference between the bypass helium heat transfer first cold inlet temperature and the hydrogen gas first cold exit temperature is 1 to 2 K for each bypass flow heat exchanger.
摘要:
A process for liquefying a process gas that includes introducing a heat transfer fluid into an active magnetic regenerative refrigerator apparatus that comprises a single stage comprising dual multilayer regenerators located axially opposite to each other.