Abstract:
An ad-hoc, peer-to-peer radio access system for cellular communications systems using time division duplex as a way of maximizing the bits/hz/km2 for cellular systems. The network architecture of the ad-hoc system allows the radio access to be integrated with the fixed components of a conventional cellular system, PSTN or ISP. The objective is to make the system of the invention transparent to the features and services provided by the external network. The advantages of such a system to a cellular operator are that significantly less infrastructure is required, and that the RF spectrum is more efficiently utilized resulting in much lower building and operating costs. The system architecture is comprised of remote terminals, routers, gateways, and at least one gateway controller that interfaces the ad-hoc system to a cellular network system. The ad-hoc system of the invention allows for both voice and data transmissions and receptions.
Abstract:
A system and method for improving the ability of a portable voice and data wireless communications network to provide position information regarding mobile nodes located within a network. The system and method employs mobile access points, wireless routers, and mobile nodes, which each contain at least one transceiver, and are mounted or dispersed at a geographic location. Access points can be connected to mobile vehicles, or connected to a network management system, and wireless routers can be mounted to portable stands for easy deployment. Mobile nodes can be attached to equipment or personnel for tracking purposes, and each node includes technology which may determine an absolute node location containing latitude, longitude and altitude of a node, or a relative node location containing the distance and angle between nodes, or a combination of both absolute and relative location data.
Abstract:
A system and method for evaluating at least one communication link between a transmitting node and a receiving node in a communications network, such as a wireless ad-hoc communications network in accordance with the 802.11 standard. The system and method perform the operation of assigning respective link quality values to the respective communication links based on a transmit power level (TPL) value at which the respective data packets were transmitted by the transmitting node over the respective links, a received sensitivity (RS) value of the receiving node receiving the data packets, and a receive signal strength indication (RSSI) value provided by the network for each respective link. The system and method can examine a content of a data packet being sent between the two nodes to determine the TPL, and can receive the RSSI value from a physical layer of the communications network. Accordingly, the system and method can determine which link that additional data packets are to be sent by the transmitting node to the receiving node via the communication link based on the link quality values. Specifically, the link having the highest link quality value is selected.
Abstract:
A method for calculating service redundancy of a wireless network is provided. The method comprises determining one or more of a plurality of routes through which a node can communicate to reach a destination. A routing metric is calculated for each of the plurality of routes. Using the calculated routing metrics a route having a best routing metric is identified as a best route to the destination. Service redundancy for each node within the wireless network is calculated using a sum of weighted ratios of the best routing metric to at least one alternate routing metric.
Abstract:
A system and method for locating and using multiple routes to transmit sub-packets of data from a source node to a destination node in an ad-hoc network, thus preventing intermediate nodes in any one transmission path from intercepting a useful amount of information. The system and method routes communications between a source node and a destination node via multiple routes, selected in a random fashion. Further protection is achieved by breaking data packets into sub-packets requiring reassembly at the destination node.
Abstract:
A system and method for evaluating at least one communication link between a transmitting node and a receiving node in a communications network. The system and method perform the operation of assigning respective link quality values to the respective communication links based on a transmit power level (TPL) value at which the respective data packets were transmitted by the transmitting node over the respective links, a received sensitivity (RS) value of the receiving node receiving the data packets, and a receive signal strength indication (RSSI) value provided by the network for each respective link. Based on the link quality values, the system and method can determine whether additional data packets are to be sent by the transmitting node to the receiving node via the communication link. Specifically, the link having the highest link quality value is selected.
Abstract:
A system and method for allowing network users to securely administer and deploy network nodes (102). These networks (100) may comprise wired and/or wireless connections. Examples would include wired networks (104) with shared infrastructure in an office building, as well as ad-hoc multi-hopping peer-to-peer network applications for the home. The system and method provides a key (130) that allows new nodes (102) and thus new devices (124, 126, 132) to gain access to a network (100) via an existing node (122) of that network (100).
Abstract:
A method for calculating service redundancy of a wireless network is provided. The method comprises determining one or more of a plurality of routes through which a node can communicate to reach a destination. A routing metric is calculated for each of the plurality of routes. Using the calculated routing metrics a route having a best routing metric is identified as a best route to the destination. Service redundancy for each node within the wireless network is calculated using a sum of weighted ratios of the best routing metric to at least one alternate routing metric.
Abstract:
A system and method for achieving enhanced CSMA/CA which improves channel availability and quality of service (QoS) in a wireless communications network. The system and method establish channels to enable communication between nodes in a communication network, based on the relationship between the average time length of message data packets and the time lengths of the request to send and clear to send messages. A node of the communication network places a data packet at a location in a queue for retransmission based on a type of information contained in the data packet if the destination node for which the data packet is intended is unable to receive the data packet. The location in the queue is indicative of a duration of time that the node will delay before attempting to resend the data packet to the destination node.
Abstract:
A system and method for detecting communication requirements in a network and placing nodes in various stages of activity where conditions allow. The system and method provides an algorithm to detect changes in node activity levels and alter operations, such as update transmissions and route selections, based upon changes detected. In particular, the algorithm determines activity level at a node at each routing update interval based on factors such as a number of new destinations the node can reach, a number of route modifications that the node can implement, a number of routes from the node whose lengths have changed and a number of destinations the node can no longer reach. The node can then increase or decrease the rate that it exchanges its routing information with neighboring nodes based on an increase or decrease in this activity level.