Abstract:
A communication method and system are provided that include providing synchronization information about a co-sited downlink carrier. This information may be transmitted to from a base station to a mobile device. The mobile device may receive this information and perform handover or measurements based on the received synchronization information.
Abstract:
A method and system for soft handover detection for uplink interference avoidance that includes a network device and mobile device in a communications network. The mobile device uses a downlink carrier. A parameter, such as a signal strength or a signal quality, of the downlink carrier and one of a co-sited downlink carrier or neighboring downlink carrier is measured. A soft handover area is detected by the network device or the mobile device based on comparing the signal strength or the signal quality of the downlink carrier with the signal strength or the signal quality of one of the co-sited downlink carrier or the neighboring downlink carrier. The downlink carrier, the co-sited downlink carrier or the neighboring downlink carrier may be from a core band, (e.g., 2.0 GHz), or extension band, (e.g., 2.5 GHz), of frequencies or combination thereof. The system provides for handovers while uplink carrier interference is avoided.
Abstract:
There is disclosed a method of testing a network access element configured for demodulating an enhanced dedicated channel, E-DCH, with hybrid automatic repeat request, HARQ, functionality, the method comprising: transmitting E-DCH packets to the network access element; and selectively autonomously retransmitting E-DCH packets to the network access element.
Abstract:
In a cellular radio system having in each of a plurality of cells at least one base station communicating with mobile stations located within its area, the base stations each transmit a pilot signal to the mobile stations. At least one of the base stations, transmits to the mobile stations by transmitting a pilot signal by using a rather narrow changing antenna beam. The angle of the greatest gain of the antenna beam is controlled in such a way that the antenna beam sweeps the cell area. The mobile stations can use the pilot signal in the identification of a base station, and as an indicator of a need for handover, without the continuous reception of the pilot signal in the subscriber equipment, and without a need to transmit the pilot signal with a higher transmission power than the other signals.
Abstract:
Peak-to-average power ratio of a signal which has a plurality of components is detailed. An exemplary method, apparatus and embodied computer program distribute the reduction in peak-to-average power ratio over the components of the signal in a non-even manner, taking into account the effect of reducing the peak-to-average power ratio of each component on the quality of the resultant signal.
Abstract:
An apparatus and method of steering a signal from a base station is disclosed. The base station comprises one or more antenna arrays, one or more channel units, the channel units comprising means for phasing the signal to be transmitted and received in such a way that the gain from the antenna array is greatest in a specified direction. Further, the base station includes means for distinguishing connection quality information from information received from the mobile station. In order to improve the spectral efficiency and the connection quality, the channel unit comprises means for searching for the incoming directions and delays of the received signal components, and means for controlling the phasing means of the signal transmitted to the mobile on the basis of the information and the connection quality information received from the mobile station.
Abstract:
In a cellular telecommunications system having mobile exchanges, base stations and user mobile stations roaming in the system, the mobile exchanges are arranged to provide inter-exchange soft handoff with diversity combining. The mobile exchanges further are arranged to provide for control handoff, wherein user communications control handoff, wherein user communications control and signal diversity combining functions involved with the user communications are handed off from a first mobile exchange to a second mobile exchange.
Abstract:
An inter-frequency handover of a UE connection is performed in which the frequency of the uplink connection from the UE to a base station remains the same and the frequency of the downlink connection from the base station to the UE changes from a first downlink frequency to a second downlink frequency. A request for the handover is transmitted from the base station. The request containing information indicating the second downlink frequency and information indicating that the uplink frequency remains the same. In response to the request, the physical layer of the uplink connection is maintained while changing the downlink frequency from the first downlink frequency to the second downlink frequency.
Abstract:
An inter-frequency handover of a UE connection is performed in which the frequency of the uplink connection from the UE to a base station remains the same and the frequency of the downlink connection from the base station to the UE changes from a first downlink frequency to a second downlink frequency. A request for the handover is transmitted from the base station. The request containing information indicating the second downlink frequency and information indicating that the uplink frequency remains the same. In response to the request, the physical layer of the uplink connection is maintained while changing the downlink frequency from the first downlink frequency to the second downlink frequency.
Abstract:
A method for steering an antenna beam and base station equipment including at least one antenna array having a plurality of elements and at least one channel unit having a means for phasing a signal to be transmitted and received by the antenna array such that gain from the antenna array is the greatest in the desired direction. In order to improve the spectral efficiency of the system, the channel unit includes a means for searching for the incoming directions and delays of the received signal components and a means for controlling the phasing means of the opposite transmission direction based on the information.