Abstract:
An inter-frequency handover of a UE connection is performed in which the frequency of the uplink connection from the UE to a base station remains the same and the frequency of the downlink connection from the base station to the UE changes from a first downlink frequency to a second downlink frequency. A request for the handover is transmitted from the base station. The request containing information indicating the second downlink frequency and information indicating that the uplink frequency remains the same. In response to the request, the physical layer of the uplink connection is maintained while changing the downlink frequency from the first downlink frequency to the second downlink frequency.
Abstract:
An inter-frequency handover of a UE connection is performed in which the frequency of the uplink connection from the UE to a base station remains the same and the frequency of the downlink connection from the base station to the UE changes from a first downlink frequency to a second downlink frequency. A request for the handover is transmitted from the base station. The request containing information indicating the second downlink frequency and information indicating that the uplink frequency remains the same. In response to the request, the physical layer of the uplink connection is maintained while changing the downlink frequency from the first downlink frequency to the second downlink frequency.
Abstract:
A method for steering an antenna beam and base station equipment including at least one antenna array having a plurality of elements and at least one channel unit having a means for phasing a signal to be transmitted and received by the antenna array such that gain from the antenna array is the greatest in the desired direction. In order to improve the spectral efficiency of the system, the channel unit includes a means for searching for the incoming directions and delays of the received signal components and a means for controlling the phasing means of the opposite transmission direction based on the information.
Abstract:
In a CDMA cellular telecommunications system, comprising mobile exchanges (MSC), base stations (BS) and mobile stations (MS), a new CDMA handoff procedure, a semi-hard handoff, is employed. Semi-hard handoff takes place within one and the same border base station (BS12), located in the boundary of two service areas (SA1, SA2) which are controlled by neighbouring mobile exchanges (MSC1, MSC2). This border base station is connected to and can be accessed from both of these neighbouring mobile exchanges. The inventive semi-hard handoff is a network based handoff of the communication control functions from the first to the second neighbouring mobile exchange without interrupting the active CDMA radio communications between the border base station (BS12) and the mobile station (MS).
Abstract:
A method and system for cell identification for uplink interference avoidance that includes a network device and mobile device in a communications network. Inter-frequency measurements are performed by a mobile device on a downlink carrier currently not used by the mobile device. A result of the inter-frequency measurements is compared with another value. Second measurements are initiated on the downlink carrier currently not used by the mobile device based on the comparison. A cell is identified based on the second measurements. The inter-frequency measurements may include receive signal strength indicator (RSSI) measurements, received signal code power (RSCP) measurements, or average channel power-to-total signal power ratio (Ec/Io) measurements. The second measurements may include signal quality measurements.
Abstract:
A method and system for soft handover area detection for uplink interference avoidance that includes a network device and mobile device in a communications network. A trigger criteria threshold is determined for the mobile device. The mobile device is using a downlink carrier. If a trigger criteria has risen above or fallen below the trigger criteria threshold, inter-frequency measurements of co-sited cells are performed and compared to determine if a soft handover area exists. Co-sited cells are searched for downlink carriers and reselection is initiated from the downlink carrier to a co-sited cell downlink carrier if the co-sited cell downlink carrier is useable by the mobile device. Reselection is initiated from the downlink carrier to a non co-sited cell downlink carrier if no co-sited cell downlink carrier useable by the mobile device is found. The system provides for reselection while uplink carrier interference is avoided.
Abstract:
A cellular radio system and a method for transmitting pilot channels in a cellular radio network includes, in each cell, at least one base station communicating with mobile stations located within its area. The base stations transmit a data signal in the downlink direction by using transmission directions that change in time and which transmit information about the system to the mobile stations on control channels. In order to enable the most efficient use of the pilot channels, the base stations transmit at least one first pilot channel with a predetermined radiation pattern and second pilot channels on transmission directions that change in time. The predetermined radiation pattern determines the cell coverage area.
Abstract:
The invention relates to a RAKE receiver of a CDMA system using IRC, the receiver receiving a radio signal by using at least two antenna branches. In accordance with the invention a RAKE finger comprises: a weighting coefficient part for forming weighting coefficients maximizing the Signal-to-Interference-and-Noise Ratio for each antenna branch; a multiplier for multiplying a pilot part, despread by a despreader in each antenna branch, by a weighting coefficient; a multiplier for multiplying a data part, despread by a despreader in each antenna branch, by a weighting coefficient; an antenna branch summer for combining the despread pilot parts, received via the separate antenna branches and multiplied by the weighting coefficient, to one pilot signal; an antenna branch summer for combining the despread data parts, received via the separate antenna branches and multiplied by the weighting coefficient, to one data signal. In addition, the receiver comprises a RAKE finger summer for combining the data signals of the RAKE fingers operating by different delays to a sum data signal representing the received bits.
Abstract:
A base station equipment for receiving and transmitting a signal of a desired user, which signal to be received may arrive at the equipment along several different paths with several different delays, and which equipment includes one or more antenna arrays composed of several elements, one or more channel units having components for phasing the signal to be transmitted and received by the antenna array in such a way that the gain from the antenna array is the greatest in the desired directions. Each channel unit includes components for searching for the incoming directions and delays of the received signal components, and components for controlling the phasing components on the basis of the information in such a way that the angle of the greatest gain of the antenna beams is deflected in the environment of the desired directions.
Abstract:
A communication method and system are provided that include providing synchronization information about a co-sited downlink carrier. This information may be transmitted to from a base station to a mobile device. The mobile device may receive this information and perform handover or measurements based on the received synchronization information.