摘要:
A printing device includes at least one printing engine that comprises customer replaceable units. At least one engine controller is operatively connected to the printing engine, and the engine controller uses software to control operations of the printing engine. At least one non-volatile memory is operatively connected to the engine controller. The non-volatile memory stores values used by the engine controller to control operations of the printing engine. Additionally, at least one adapter card is operatively connected to the non-volatile memory and to the customer replaceable units. The customer replaceable units each comprise a memory unit. The adapter card reads incoming print jobs before the print jobs are delivered to the controller and the adapter card accumulates and stores statistics relating to print jobs within the memory unit of the customer replaceable units. The adapter card passes the incoming print jobs to the controller in an unaltered manner.
摘要:
A printing device includes at least one printing engine that has many sensors (first sensors and second sensors) and at least one engine controller operatively connected to the printing engine. The engine controller uses software to control operations of the printing engine. Also, at least one non-volatile memory is operatively connected to the engine controller. The non-volatile memory stores values used by the engine controller to control operations of the printing engine. At least one adapter card is operatively connected to the non-volatile memory and to the first sensors and second sensors. The first sensors correspond to the design of the controller and are items designed as original equipment of the printing device. To the contrary, the second sensors correspond to the design of the adapter card and are items designed to be installed in the printing device after the printing device is in post production, customer service. The adapter card receives feedback from the first sensors and the second sensors and the adapter card reads and modifies incoming print jobs before the print jobs are delivered to the controller.
摘要:
A printing device includes at least one printing engine that has actuators and sensors. At least one engine controller is operatively connected to the printing engine, the engine controller uses software to control operations of the printing engine. At least one non-volatile memory is operatively connected to the engine controller. The non-volatile memory stores values used by the engine controller to control operations of the printing engine. Further, at least one adapter card is operatively connected to the non-volatile memory and to the actuators and sensors. The adapter card stores data and receives sensor feedback from the sensors. The adapter card uses the data and the sensor feedback to control the actuators by bypassing the engine controller when communicating with the actuators. The adapter card provides adapter card feedback to the non-volatile memory.
摘要:
A printing device includes at least one printing engine that has many sensors (first sensors and second sensors) and at least one engine controller operatively connected to the printing engine. The engine controller uses software to control operations of the printing engine. Also, at least one non-volatile memory is operatively connected to the engine controller. The non-volatile memory stores values used by the engine controller to control operations of the printing engine. At least one adapter card is operatively connected to the non-volatile memory and to the first sensors and second sensors. The first sensors correspond to the design of the controller and are items designed as original equipment of the printing device. To the contrary, the second sensors correspond to the design of the adapter card and are items designed to be installed in the printing device after the printing device is in post production, customer service. The adapter card receives feedback from the first sensors and the second sensors and the adapter card reads and modifies incoming print jobs before the print jobs are delivered to the controller.
摘要:
An apparatus (100) and method (200) for print apparatus rotational assembly cleaning blade adjustment is disclosed. The apparatus can include a printer rotational transport assembly (110) configured to transport a substance in a printer. The apparatus can include a cleaning blade (120) coupled to the printer rotational transport assembly and a cleaning blade sensor (130) coupled to the cleaning blade, where the cleaning blade sensor can be configured to sense cleaning blade stress condition information. The apparatus can include a controller (140) coupled to the cleaning blade and the cleaning blade sensor, where the controller can be configured to adjust cleaning blade parameters of operation based on the sensed cleaning blade stress condition information.
摘要:
A printing device has a printing engine that is at least partially made up of a customer replaceable unit or units. An engine controller is operatively connected to the printing engine. The engine controller uses software to control the operations of the printing engine. A non-volatile memory is operatively connected to the engine controller. The non-volatile memory stores values used by the engine controller to control operations of the printing engine. An adapter card is operatively connected to the non-volatile memory and to the customer replaceable units. The customer replaceable unit has a memory unit and the adapter card reads data from the memory unit. The adapter card uses the data to directly alter values within the non-volatile memory by bypassing the engine controller when communicating with the non-volatile memory. Further, the adapter card alters the non-volatile memory without altering the software used by the engine controller.
摘要:
A method for minimizing cross-process non-uniformities in solid and heavy shadow regions of printed documents is provided. The method includes marking with a marking engine an image on an image bearing surface moving in a process direction; generating profile data of the image by sensing an optical characteristic of the image in a cross-process direction; adjusting at least one control actuator of the marking engine so as to shift the characteristic of a subsequent marked image in the cross-process direction to at least a target value; and generating a spatially varying tone reproduction curve to smooth the characteristic of the subsequent marked image towards the target value.
摘要:
A printing device has a printing engine that is at least partially made up of a customer replaceable unit or units. An engine controller is operatively connected to the printing engine. The engine controller uses software to control the operations of the printing engine. A non-volatile memory is operatively connected to the engine controller. The non-volatile memory stores values used by the engine controller to control operations of the printing engine. An adapter card is operatively connected to the non-volatile memory and to the customer replaceable units. The customer replaceable unit has a memory unit and the adapter card reads data from the memory unit. The adapter card uses the data to directly alter values within the non-volatile memory by bypassing the engine controller when communicating with the non-volatile memory. Further, the adapter card alters the non-volatile memory without altering the software used by the engine controller.
摘要:
Methods and systems are provided for controlling a printing device in the presence of reload defects. According to a first embodiment, a controller is provided to manage the printing of scheduled control patches immediately after an image of a print job. Accordingly to a second embodiment, a controller is configured to manage the printing of an image or a print job immediately after a control patch.
摘要:
An automated license plate recognition (ALPR) system and method using a human-in-the-loop based adaptive learning approach. One or more images with respect to an automotive vehicle can be segmented in order to determine a license plate of the automotive vehicle within a scene. An optical character recognition (OCR) engine loaded with an OCR algorithm can be further adapted to determine a character sequence of the license plate based on a training data set. A confidence level with respect to the images can be generated in order to route a low confidence image to an operator for obtaining a human interpreted image. The parameters with respect to the OCR algorithm can be adjusted based on the human interpreted image and the actual image of the license plate. A license plate design can be then incorporated into the OCR engine in order to automate the process of recognizing the license plate with respect to the automotive vehicle in a wide range of transportation related applications.