摘要:
Methods for recognizing a virtual tooth surface, defining a virtual tooth coordinate system, and simulating a collision between virtual teeth are provided. Methods include receiving input data specifying a point on the rendered surface model associated with a tooth, deriving a perimeter on the surface model of the tooth, and analyzing the surface model along a plurality of paths outwardly extending from points on the perimeter. Methods also include receiving point input data, receiving axis input data that defines first and second axes associated with the virtual tooth, computing a substantially normal vector for a portion of the tooth surface surrounding the point, and computing a coordinate system. Methods also include receiving permissible movement input data directed to permissible movement of a first virtual tooth, bringing the first virtual tooth into contact with a second virtual tooth, and displaying data resulting from the simulation.
摘要:
Methods for recognizing a virtual tooth surface, defining a virtual tooth coordinate system, and simulating a collision between virtual teeth are provided. Methods include receiving input data specifying a point on the rendered surface model associated with a tooth, deriving a perimeter on the surface model of the tooth, and analyzing the surface model along a plurality of paths outwardly extending from points on the perimeter. Methods also include receiving point input data, receiving axis input data that defines first and second axes associated with the virtual tooth, computing a substantially normal vector for a portion of the tooth surface surrounding the point, and computing a coordinate system. Methods also include receiving permissible movement input data directed to permissible movement of a first virtual tooth, bringing the first virtual tooth into contact with a second virtual tooth, and displaying data resulting from the simulation.
摘要:
Computer-based techniques are described that use orthodontic prescription templates to assist an orthodontic practitioner in creating a patient-specific orthodontic prescription. In particular, an orthodontic practitioner may retrieve a stored electronic orthodontic prescription template. The practitioner may then generate an orthodontic prescription that is specific to a patient's teeth by modifying one or more bracket attributes of the template within orthodontic modeling software. Subsequently, the practitioner may communicate the patient-specific orthodontic prescription to a manufacturing facility that constructs an indirect bonding tray for use in physically placing brackets on the patient's teeth.
摘要:
A system automatically adjusts an orthodontic bracket to a desired occlusal height on a tooth within a 3D environment. The system allows a practitioner to specify a desired occlusal height at which to place the bracket on the tooth. The practitioner may choose the desired occlusal height from a standardized set of occlusal heights or may create a customized occlusal height to meet a patient's particular needs. Based on the desired occlusal height, the system automatically adjusts the placement of the orthodontic bracket to the desired occlusal height on the tooth within the 3D environment. The system then generates a visual representation the resulting bracket placement within the 3D environment.
摘要:
A system automatically adjusts an orthodontic bracket to a desired mesio-distal position on a tooth within a 3D environment. The system allows a practitioner to specify a desired mesio-distal position at which to place the bracket on the tooth. The practitioner may choose the desired mesio-distal position from a standardized set of mesio-distal positions or may create a customized mesio-distal position to meet a patient's particular needs. Based on the desired mesio-distal position, the system automatically adjusts the placement of the orthodontic bracket to the desired mesio-distal position on the tooth within the 3D environment. The system then generates a visual representation of the resulting bracket placement within the 3D environment.
摘要:
An orthodontic treatment planning system is described that models the effects of torque losses within an orthodontic archwire-appliance system when computing a predicted final occlusion for a dental arch. The treatment planning system models engagement of the archwire with the orthodontic appliances at each appliance position along the length of the archwire. The treatment planning system iteratively determines the twist angle of the archwire at each appliance position along the length of the archwire and incrementally adjusts the orientation and the position of each tooth based on the determined twist angles until the twist angle at each position along the archwire is within a defined tolerance of zero. When the twist angle at each position along the archwire is within a defined tolerance of zero, the archwire is relaxed and a 3D representation of the computed final occlusion of the dental arch may be displayed.
摘要:
Techniques are described for providing an environment to model and depict a three-dimensional (3D) representation of a patient's dental arch, i.e., a virtual dental arch, and a separate cross section tool, such as a graphical user interface (GUI), as a visual aid to an orthodontic practitioner for selecting a position of cross section planes relative to the virtual dental arch. The GUI may display a control image and two moveable parallel lines. The position of the parallel lines relative to the control image approximates the position of the cross section planes relative to the virtual dental arch. Thus, by interacting with the GUI, the practitioner is able to change the position of the cross section planes within the 3D environment. Consequently, the practitioner can visualize the cross sections of the virtual dental arch within the 3D environment while selecting the position of the cross section planes.
摘要:
A digital orthodontic treatment planning system provides a practitioner with a digital representation of at least a part of a tooth of a patient within a three-dimensional environment. The practitioner may provide input indicative of a desired movement for a tooth of a patient via a user interface. Based on the desired movement for the tooth, a position of a virtual orthodontic appliance is calculated. The digital representation of the tooth may be moved in accordance with the adjusted position of the virtual orthodontic appliance. In this way, the system provides the practitioner with the perception that the input is being directly applied to the tooth, whereas the input is being indirectly applied to the tooth.
摘要:
A digital orthodontic treatment planning system provides a practitioner with a digital representation of at least a part of a tooth of a patient within a three-dimensional environment. The practitioner may provide input indicative of a desired movement for a tooth of a patient via a user interface. Based on the desired movement for the tooth, a position of a virtual orthodontic appliance is calculated. The digital representation of the tooth may be moved in accordance with the adjusted position of the virtual orthodontic appliance. In this way, the system provides the practitioner with the perception that the input is being directly applied to the tooth, whereas the input is being indirectly applied to the tooth.
摘要:
A system automatically determines positions of orthodontic objects, such as teeth and/or orthodontic appliances, along an archwire within a three-dimensional (3D) environment based on a proposed orthodontic prescription. The resulting placement of the orthodontic objects in the dentition predicts a final occlusion that may result from the proposed orthodontic prescription. An orthodontic practitioner may interact with the system to enter a proposed orthodontic prescription, or the system may choose the proposed orthodontic prescription from a number of standardized prescriptions stored in a database. The system may also display a digital representation of the orthodontic objects at the determined positions. The practitioner may modify the proposed prescription and view the resulting placement of the orthodontic objects until a desired result is obtained.