摘要:
A process for forming a wire portion in an integrated electronic circuit includes epitaxially growing the wire portion on a side surface of a seed layer portion (11, 12). Cross-sectional dimensions of the wire portion correspond to a thickness of the seed layer portion and to a duration of the growing step. The seed layer portion is then selectively removed while the wire portion is retained fixedly on the circuit. Afterwards, heating of the circuit can cause the wire portion becoming rounded in cross-section. The wire portion obtained may be about 10 nanometers in diameter. It may be used for forming a channel of a MOS transistor devoid of short channel effect.
摘要:
A process for forming a wire portion in an integrated electronic circuit includes epitaxially growing the wire portion on a side surface of a seed layer portion (11, 12). Cross-sectional dimensions of the wire portion correspond to a thickness of the seed layer portion and to a duration of the growing step. The seed layer portion is then selectively removed while the wire portion is retained fixedly on the circuit. Afterwards, heating of the circuit can cause the wire portion becoming rounded in cross-section. The wire portion obtained may be about 10 nanometers in diameter. It may be used for forming a channel of a MOS transistor devoid of short channel effect.
摘要:
A method of forming a silicon germanium conduction channel under a gate stack of a semiconductor device, the gate stack being formed on a silicon layer on an insulating layer, the method including growing a silicon germanium layer over said silicon layer and heating the device such that germanium condenses in the silicon layer such that a silicon germanium channel is formed between the gate stack and the insulating layer.
摘要:
The invention concerns a method of forming a silicon germanium conduction channel under a gate stack (6) of a semiconductor device, the gate stack being formed on a silicon layer (4) on an insulating layer (2), the method comprising: growing a silicon germanium layer (14) over said silicon layer; and heating the device such that germanium condenses in said silicon layer (4) such that a silicon germanium channel (18) is formed between said gate stack and said insulating layer.
摘要:
The present invention relates to a method for fabricating a planar independent-double-gate FET or a planar gate-all-around FET on a bulk semiconductor substrate. The method comprises refilling a surface recess in an active semiconductor region with a buried sacrificial layer, and, after preparing a pre-processing a gate stack by respective deposition and patterning, the formation of a recess in the isolation regions so as to cause the recess to extend, in a depth direction that points towards the inner substrate, to a depth level that allows removing the buried sacrificial layer and so as to cause the recess to undercut portions of gate stack in the channel direction.
摘要:
The present invention relates to a method for fabricating a planar independent-double-gate FET or a planar gate-all-around FET on a bulk semiconductor substrate. The method comprises refilling a surface recess in an active semiconductor region with a buried sacrificial layer, and, after preparing a pre-processing a gate stack by respective deposition and patterning, the formation of a recess in the isolation regions so as to cause the recess to extend, in a depth direction that points towards the inner substrate, to a depth level that allows removing the buried sacrificial layer and so as to cause the recess to undercut portions of gate stack in the channel direction.
摘要:
The invention relates to a method for producing a device with a membrane used to encapsulate a fluid contained in a cavity, in which: two substrates (110, 120) are provided; a membrane (111) is placed on one and/or on the other of the substrates; one or more walls (113) are formed, helping to laterally define the cavity (114), in which said walls are located on or in one of the substrates and/or on or in the other of the substrates, and said cavity is intended to contain the fluid, the two substrates (110, 120) are assembled together by superimposing one on the other so as to complete the cavity, in which the or each membrane (111) also helps to define the cavity, the fluid (117) is encapsulated in the cavity between the substrates, and the or each membrane is soaked by the fluid, at least a portion of one of the substrates and/or the other of the substrates is removed insofar as one and/or the other of the substrates are equipped with a membrane, in order to release the membrane at least in the central portion thereof.
摘要:
A static random access memory cell which, on a substrate surmounted by a stack of layers, including: a first plurality of transistors situated at a given level of the stack of which at least one first access transistor and at least one second access transistor are connected to a word line and are arranged between a first bit line and a first storage node and a second bit line and a second storage node, respectively; and a second plurality of transistors forming a flip-flop and situated at least one other level of the stack, beneath said given level, wherein the transistors of the second plurality of transistors each comprising a gate electrode situated opposite a channel region of a transistor of the first plurality of transistors and separated from this channel region by an insulating region provided to enable coupling of said gate electrode and said channel region.
摘要:
The integrated circuit comprises at least one MOS transistor (T) including a gate (GR) having a bottom part in contact with the gate oxide. Said bottom part has an inhomogeneous work function (WFB, WFA) along the length of the gate between the source and drain regions, the value of the work function being greater at the extremities of the gate than in the centre of the gate. The gate comprises a first material (A) in the centre and a second material (B) in the remaining part. Such configuration is obtained for example by silicidation.
摘要:
The invention relates to a method for producing a device with a membrane used to encapsulate a fluid contained in a cavity, in which: two substrates (110, 120) are provided; a membrane (111) is placed on one and/or on the other of the substrates; one or more walls (113) are formed, helping to laterally define the cavity (114), in which said walls are located on or in one of the substrates and/or on or in the other of the substrates, and said cavity is intended to contain the fluid, the two substrates (110, 120) are assembled together by superimposing one on the other so as to complete the cavity, in which the or each membrane (111) also helps to define the cavity, the fluid (117) is encapsulated in the cavity between the substrates, and the or each membrane is soaked by the fluid, at least a portion of one of the substrates and/or the other of the substrates is removed insofar as one and/or the other of the substrates are equipped with a membrane, in order to release the membrane at least in the central portion thereof.