摘要:
A motionless parallel head reads an optical disk having an active surface encoded with an arrayed multiplicity of one-dimensional holograms. Each 1-D hologram is a computer-encoded representation of, typically, one 128 pixel slice of an image. A group, typically 128, 1-D holograms are positionally distributed, and positionally shifted or staggered one to the next, radially along the disk's active surface so as to fit a complete radius. Typically 14,000 groups are circumferentially-displaced around a 51/4" Compact Disk (CD), forming a herringbone pattern. During readout the encoded CD is simultaneously illuminated along the entirety of one of its radius lines within which a group of holographic data blocks are fitted. The illuminated group of holographic data blocks are optically transformed in parallel by one or more lenses, and preferably by a Hybrid refractive/diffractive Optical Lens (HOL), so as to two-dimensionally spatially encode the wavefront of the light beam by which the group of holographic data blocks was illuminated. The 2-D spatially-encoded light beam is detectable by an array of light detectors. When the disk is rotated then sucessive groups of holographic data blocks that are fitted along successive radius lines are successively retrieved, group by group, at a typically 1.1 Gbyte/sec rate. Such an optical memory is useable as the secondary storage of a high performance optoelectronic associative memory system.