摘要:
The invention describes a transformer core of NiZn ferrite material. Said transformer core exhibits low overall losses when it is used in a transformer. Said low losses are attained if the majority of the grains of the sintered ferrite material have a monodomain structure. This is the case if the average grain size is smaller than 2.8 microns. The average grain size of the sintered material preferably ranges of from 1.3 to 2.6 microns. The .delta.-value is preferably less than 4 nm.
摘要:
A description is given of a method of manufacturing a permanent magnet on the basis of NdFeB. In this method a powder of NdFeB and a powder of a Ga alloy, consisting mainly of Ga and one or more than one rare earth metals (RE), is mixed to form a mixture which is subsequently aligned, compressed and sintered. Such alloys can be ground into homogeneous, fine-grain powders in a simple manner. The composition of the alloy preferably corresponds to the formula REGa.sub.x, where x=1 or x=2. Alloys which are very suitable contain Dy and/or Tb as the rare earth metal.
摘要:
Method of manufacturing a laser which is provided with a metal layer and a solder layer as early as in the wafer stage, and which is particularly suitable for so-called epi-down final mounting. An individual laser is obtained in that first a block comprising a row of lasers is formed from the wafer by cleaving, and subsequently the individual lasers are separated from the block. Strip-shaped openings are formed in the metal layer at the areas of end faces to be formed before the block is formed, and subsequently a score is provided in the surface of the semiconductor body in each opening in the longitudinal direction thereof, whereupon the solder layer is provided over the metal layer and over at least part of the openings therein, and the block is subsequently formed through cleaving at the areas of and in the direction of the scores.
摘要:
The invention relates to a sintered transformer core of MnZn-ferrite material, the initial permeability of which ranges between 10 and 1000. Said transformer cores preferably have an average particle size which ranges between 0.05 and 2.0 .mu.m. The transformer cores according to the invention exhibit surprisingly low overall losses when operating in the frequency range of 2 MHz and higher. Such transformer cores can be very advantageously used in transformers operated in said frequency range, such as SMPS transformers.