Abstract:
A laser-based measuring apparatus divides a light beam from a laser light source into at least two light beams, passes the light beams through different optical paths from each other, recombines the light beams, has the light beams interfere with each other to generate interfered light, opto-electrically transduces the interfered light to an optical frequency, and measures the amount of travel of an object which changes an optical path length of a portion of an optical path based on the optical frequency. The measuring apparatus has a portion for generating at least two measuring light beams from the laser light source, two reflection planes included in an object moving on a measuring axis, arranged back-to-back to each other on the measuring axis, and an opposing incident optical system for directing the measuring light beams into the reflection planes, respectively, such that the measuring light beams oppose to each other on the measuring axis.
Abstract:
Disclosed is a grooving apparatus which can carry information on an information track at high recording density when carrying the information on the information track through a change in shape of a groove and which also can improve the signal-to-noise ratio of the information under reproduction. A grooving apparatus for forming a groove to function as an information track in an optical disk comprises an electron beam generator which emits an electron beam, an objective lens which focuses the emitted electron beam on the optical disk and which focuses the electron beam on a smaller range than the size of the groove, and an X-direction deflector and a Y-direction deflector which controls the electron beam so that the electron beam is focused in position on the optical disk, thereby forming the groove in the optical disk.
Abstract:
A beam adjusting sample having a flat surface being like a plate and having two edges orthogonal to each other is employed. A beam is applied to the beam adjusting sample to detect an amount of the beam passing through the beam adjusting sample. The beam vertically scans the two edges.
Abstract:
Preceding to the reading out of the recording information of the optical disk by the pick-up, the height of the foreign material existing at the light converging position on the information reading surface is detected by the detector, and when the height of the foreign material is higher than the floating height h of the SIL, the magnetic field is generated by applying the control current corresponding to the height of the foreign material to the coil as the magnetic field generator at the timing before the foreign material is moved to the information reading position of the pick-up by the rotation of the optical disk. Then, when the magnetic field is provided to the magnetic substance fixedly holding the SIL which is floating, the movement operation to separate the SIL to the higher position than the height of the foreign material from the information reading surface together with the magnetic substance, is conducted.
Abstract:
An electron beam apparatus for irradiating a target with an electron beam includes a reference sample including at least one reference pattern which has a plurality of lattice structures arranged along the circumference of a circle in a evaluation surface of the reference sample; and an adjustment section for adjusting the electron beam by irradiating the evaluation surface with the electron beam on the basis of electrons generated from the reference sample.
Abstract:
The invention relates to an optical disc of the next generation which is capable of recording data at a high density by using an optical system having a larger numerical aperture and a reproduce beam of light with a shorter wavelength than those used with a conventional DVD. The optical disc includes an information recording layer where information is recorded as an array of pits at a predetermined track pitch, and a light transmitting layer formed on the information recording layer and having a film thickness of 0.13 mm or less. The information recorded therein is reproduced upon irradiation of a beam of light having a wavelength ranging from 400 nm to 415 nm onto the information recording layer through the light transmitting layer from an objective lens having a numerical aperture ranging from 0.75 to 0.86. In this disc, a taper angle of the pits is 55 degrees or higher.