摘要:
An active matrix organic light emitting diode pixel circuit includes an organic light emitting diode, a driving circuit, a switching circuit and a capacitor. In a charge state, by controlling the switching circuit, a first end of the capacitor is electrically coupled to a signal input terminal, and a second end of the capacitor is electrically coupled to a first power source. In a compensation state, by controlling the switching circuit, the first end of the capacitor is electrically coupled to the signal input terminal, and the second end of the capacitor is electrically coupled to an anode of the organic light emitting diode. In an emission state, by controlling the switching circuit, the first end of the capacitor is electrically coupled to the driving circuit, and the second end of the capacitor is electrically coupled to the driving circuit and the anode of the organic light emitting diode.
摘要:
An OLED driving circuit is provided. The OLED driving circuit comprises a switch transistor, a storage capacitor, a driving transistor and a control module. In a charging time period, a charging switch of the control module is conducted to connect the storage capacitor and a first voltage end and a data signal is transmitted from the switch transistor to the storage capacitor. In a memory time period, a memory switch of the control module is conducted to connect the storage capacitor and an OLED and the data signal is transmitted from the switch transistor to the storage capacitor. In a light-emitting time period, three light-emitting switches are conducted to connect the driving transistor to the storage capacitor, the first voltage end and the OLED.
摘要:
A driver circuit is provided. The driver circuit includes a first transistor for receiving a preceding gate signal to generate a first control signal, a second transistor for pulling down the first control signal according to a second control signal, a third transistor for outputting a clock signal according to the first control signal, a fourth transistor for pulling down the clock signal according to the second control signal, a fifth transistor connected to a high voltage source for outputting the second control signal, a sixth transistor for pulling down the second control signal according to the first control signal, a seventh transistor for receiving a next gate signal to pull down the first control signal, and a capacity. The preceding gate signal charges the capacitor to generate the first control signal.
摘要:
An electronic paper structure is disclosed, which includes a hard substrate, a flexible substrate, at least one magnetic device for fastening the flexible substrate on the hard substrate temporally, a drive substrate formed on the flexible substrate, an electronic paper display layer formed on the drive substrate, and a protect layer formed on the electronic paper display layer. An electronic paper fabricating method using the same is also disclosed.
摘要:
The present invention provides a display with touch control function. The display includes a touch panel module, a display module and a FPC board. The touch panel module includes a touch panel controller and a touch panel. The display module includes a display driver and a display panel. The touch panel is joined with the display panel. The FPC board couples with the display panel. The touch panel controller and the display driver are disposed on the FPC board.
摘要:
A color electronic paper apparatus includes a display layer, a color resist layer, an anti-ultraviolet layer and a protective sheet. The color resist layer is disposed on the display layer. The anti-ultraviolet layer is disposed on the color resist layer. The protective sheet is disposed on the anti-ultraviolet layer. A manufacturing method of the color electronic paper apparatus and a color electronic paper display are provided herein.
摘要:
A flexible electronic paper display apparatus includes a drive substrate and a display layer. The display layer is disposed on the drive substrate. The drive substrate includes a plastic substrate, a stainless steel layer, an insulation layer and a circuit unit. The stainless steel layer is disposed on the plastic substrate, the insulation layer is disposed on the stainless steel layer, and the circuit unit is disposed on the insulation layer. Production yield of the flexible electronic paper display apparatus can be increased. Additionally, a manufacturing method for the flexible electronic paper display apparatus is also provided.
摘要:
A display device includes a first substrate, a second substrate, a plurality of display units and a plurality of partitioning walls. The second substrate is disposed above the first substrate. The display units are disposed between the first substrate and the second substrate, and each of the display units has a dielectric solvent. The partitioning walls are disposed between adjacent display units correspondingly, and a dielectric constant of each of the partitioning walls is less than that of the dielectric solvent adjacent thereto. Because the dielectric constant of the partition walls is less than that of the dielectric solvent adjacent to the partition wall, a capacitance value induced at the partition wall by a driving voltage can be decreased. Thus, crosstalk phenomena can be avoided in the display unit that is not driven.
摘要:
A light sensitive display apparatus and an operating method thereof are disclosed herein. The light sensitive display apparatus includes a plurality of pixels, and the operating method of the light sensitive display apparatus includes the following steps. In a writing state, a first data voltage and a first gate voltage are provided to the pixels, and the pixels illuminated by light rays are switched to or kept in a first display state. In an erasing state, a second data voltage and a second gate voltage are provided to the pixels, and the pixels illuminated by light rays are switched to or kept in a second display state.
摘要:
A thin film transistor (TFT) array substrate includes a substrate, a gate electrode layer disposed on the substrate, an insulating layer, an oxide semiconductor layer disposed on the insulating layer, a source/drain electrode layer, an organic-acrylic photoresist layer, a passivation layer and an electrically conductive layer. The insulating layer is disposed on the gate electrode layer and the substrate. The source/drain electrode layer is disposed on the insulating layer and the oxide semiconductor layer, and a gap is formed through the source/drain electrode layer for exposing the oxide semiconductor layer therethrough. The organic-acrylic photoresist layer covers the source/drain electrode layer. The passivation layer is disposed on the substrate, the oxide semiconductor layer and the organic-acrylic photoresist layer. The electrically conductive layer is disposed on the passivation layer or the organic-acrylic photoresist layer and connected to the source/drain electrode layer or the gate electrode layer.