摘要:
A capacitive touch panel includes a first conductive film with anisotropic impedance, a second conductive film with conductive structures, and an insulating layer disposed between the first conductive film and the second conductive film. The conducting direction of the conductive structures is perpendicular to the direction of least impedance of the first conductive film.
摘要:
The present disclosure is directed to a touch panel and a method of locating a touch point. An insulating layer is disposed between a first insulating substrate and a second insulating substrate. A first conductive film with anisotropic impedance is disposed between the first insulating substrate and the insulating layer, and a second conductive film with anisotropic impedance is disposed between the insulating layer and the second insulating substrate. Multiple first pads are disposed on a peripheral region of the first conductive film along a first direction, and multiple second pads are disposed on a peripheral region of the second conductive film along a second direction. The first conductive film has least impedance along the second direction, and the second conductive film has least impedance along the first direction.
摘要:
An apparatus and a method for controlling a touch panel are disclosed herein, the apparatus includes an object detection module and an adjusting device. The object detection module can detect a position of at least one object contacting the touch panel. A position analyzer recognizes position of the object and the adjusting device can set the touch panel to a predetermined position according to the result recognized by the position analyzer.
摘要:
The present invention provides a liquid crystal display with a plurality of pixel units. Each pixel unit includes two sub-pixels, and each sub-pixel includes a thin film transistor, a liquid crystal capacitor and a storage capacitor. One of the storage capacitors is a tunable capacitor. The tunable capacitor includes a first conductive layer, an insulating layer, a semiconductor layer with a area Asem, and a second metal layer. The second conductive layer has a first region with a area Acon overlapping with the semiconductor layer. The area Acon is less than the area Asem.
摘要:
The present invention provides a liquid crystal display with a plurality of pixel units. Each pixel unit includes two sub-pixels, and each sub-pixel includes a thin film transistor, a liquid crystal capacitor and a storage capacitor. One of the storage capacitors is a tunable capacitor. The tunable capacitor includes a first conductive layer, an insulating layer, a semiconductor layer with a area Asem, and a second metal layer. The second conductive layer has a first region with a area Acon overlapping with the semiconductor layer. The area Acon is less than the area Asem.
摘要:
The present invention provides a liquid crystal display with a plurality of pixel units. Each pixel unit includes two sub-pixels, and each sub-pixel includes a thin film transistor, a liquid crystal capacitor and a storage capacitor. One of the storage capacitors is a tunable capacitor. The tunable capacitor includes a first conductive layer, an insulating layer, a semiconductor layer with a area Asem, and a second metal layer. The second conductive layer has a first region with a area Acon overlapping with the semiconductor layer. The area Acon is less than the area Asem.
摘要:
A display device detects a touched position by making use of an inducing element and a counter electrode. The voltage produced by the counter electrode is able to affect a conductivity of the channel of the inducing element corresponding to the touched position. The inducing element and a readout circuit are disposed on a substrate of the display device. The counter electrode and a shielding element are both corresponded to the inducing element. The channel of the inducing element corresponding to the touched position changes the conductivity due to the voltage produced by the corresponding counter electrode, and an inducing signal is then generated. The inducing signal is furnished to the readout circuit for signal processing, and a readout signal is generated for analyzing the touched position.
摘要:
The present invention provides a liquid crystal display with a plurality of pixel units. Each pixel unit includes two sub-pixels, and each sub-pixel includes a thin film transistor, a liquid crystal capacitor and a storage capacitor. One of the storage capacitors is a tunable capacitor. The tunable capacitor includes a first conductive layer, an insulating layer, a semiconductor layer with a area Asem, and a second metal layer. The second conductive layer has a first region with a area Acon overlapping with the semiconductor layer. The area Acon is less than the area Asem.
摘要:
A display device detects a touched position by making use of a inducing element and a counter electrode. The voltage produced by the counter electrode is able to affect a conductivity of the channel of the inducing element corresponding to the touched position. The inducing element and a readout circuit are disposed on a substrate of the display device. The counter electrode and a shielding element are both corresponded to the inducing element. The channel of the inducing element corresponding to the touched position changes the conductivity due to the voltage produced by the corresponding counter electrode, and an inducing signal is then generated. The inducing signal is furnished to the readout circuit for signal processing, and a readout signal is generated for analyzing the touched position.
摘要:
The invention provides methods of driving a pixel and liquid crystal display panels implementing the methods. The invention generates an ideal data voltage corresponding to a gray level of the pixel, and generates a compensated data voltage corresponding to the gray level according to a polarity change of the pixel. The charging period of the pixel is divided into a first charging time segment and a second charging time segment. The invention charges the pixel by the compensated data voltage during the first charging time segment, and charges the pixel by the compensated data voltage during the second charging time segment.