摘要:
A lubrication system for a fluid turbine is provided. The system includes a supply subsystem for providing oil via an oil tank or a hydraulic accumulator to a gearbox of the fluid turbine for lubrication during at least one of idling or loss of electric grid. The system also includes a control subsystem for controlling the flow in the lubrication system.
摘要:
A lubrication system for a fluid turbine is provided. The system includes a supply subsystem for providing oil via an oil tank or a hydraulic accumulator to a gearbox of the fluid turbine for lubrication during at least one of idling or loss of electric grid. The system also includes a control subsystem for controlling the flow in the lubrication system.
摘要:
A lubrication system for a wind turbine is provided. The system includes a supply subsystem for providing oil via an oil tank or a hydraulic accumulator to a gearbox of the wind turbine for lubrication during at least one of idling or loss of electric grid. The system also includes a control subsystem for controlling the flow in the lubrication system.
摘要:
An apparatus is provided that includes a heat pipe and a heat sink that includes a foam (e.g., a metal foam, a carbon foam, and/or a graphite foam) and is configured to exchange thermal energy with the heat pipe. For example, the heat pipe can include a thermal energy receiving portion and a thermal energy rejecting portion. The heat sink can be configured to receive thermal energy from a busbar and the thermal energy receiving portion can be configured to receive thermal energy from said heat sink. Alternatively, the thermal energy receiving portion can be configured to receive thermal energy from a busbar, and the heat sink can be configured to receive thermal energy from the thermal energy rejecting portion.
摘要:
A discharge device for a refrigeration compressor is provided. The device can include a discharge tube connected with the discharge of the refrigeration compressor. A bellows surrounds a perforated portion of the discharge tube. The length of the discharge tube can be minimized to decrease pressure loss. The discharge can be insulated to prevent the distribution of heat to the compressor and/or to allow for the recovery of heat energy later in the refrigeration cycle.
摘要:
An assembly for a magnetocaloric refrigeration unit includes a magnetocaloric core. Electromagnetic coils may be wound around the magnetocaloric core. The assembly further includes one or more cooling structures to extract the waste heat generated from the electromagnet coils. In some embodiments, the assembly may include one or more magnetic yokes disposed at the longitudinal ends of the magnetocaloric core. At least one of the top surface and the bottom surface of the magnetic yoke is provided with a micro-channel structure. In other embodiments, the assembly may include a coil housing disposed around the electromagnet coil. The coil housing includes cooling structures such as, but not limited to, a micro-channel structure, a fin structure, and a heat pipe structure.
摘要:
A magneto-caloric (MC) device is disclosed. The MC device comprise a rotor, a housing disposed about and concentric with the rotor and mechanically coupled to the rotor, wherein the housing comprises at least one axial slot, at least one set of MC elements, wherein each set of MC elements comprises at least one MC element, and at least one MC element of each set of MC elements is disposed within each of the at least one axial slots, and at least one working-segment corresponding to each set of MC elements, wherein each working-segment is disposed axially around the rotor and external to the housing, and wherein each working-segment comprises, a yoke substantially defining an inner volume comprising a first inner volume and a second inner volume, and a magnetic field production (MFP) unit magnetically coupled to the yoke and configured to provide a magnetic field within the first inner volume.
摘要:
A cooling mechanism for a current carrying conductor is proposed. The mechanism includes a first layer having plurality of micro fluidic channels. The first layer is thermally coupled to the current carrying conductor and configured to exchange thermal energy. A micro-pump is configured to circulate a heat exchange fluid through the micro fluidic channels to exchange thermal energy with the first layer and remove heat from the current carrying conductor. The heat exchange fluid and the current carrying conductor are electrically isolated.