Abstract:
A sensor arrangement for wirelessly measuring temperature and vibration is disclosed. The sensor arrangement includes a sensor element and a sensor coil affixed on the device. A readout coil is configured to be magnetically coupled to the sensor coil configured to energize the sensor coil with an energizing signal, configured to provide the natural frequency of the sensor element, the sensor coil, and the readout coil, and configured to provide amplitude modulations of the energizing signal, the amplitude modulations being induced by changes in the coupling factor of the readout coil and the sensor coil. An energizing circuit is configured to energize the readout coil with the energizing signal. A readout circuit is configured to store or display information regarding the natural frequency and the amplitude modulations.
Abstract:
A system for measuring a physical characteristic of mechanical face seal includes a permanent magnet and a magnetic sensor. The permanent magnet is affixed to a structure proximate to a bearing surface of the mechanical face seal. The permanent magnet has a magnetic field that decreases as a function of temperature. The magnetic sensor is mounted on the mechanical face seal in a magnetic field sensing relationship with the permanent magnet. The magnetic sensor is configured to generate a voltage signal corresponding to a sensed magnetic field.
Abstract:
A system for measuring a physical characteristic of mechanical face seal includes a permanent magnet and a magnetic sensor. The permanent magnet is affixed to a structure proximate to a bearing surface of the mechanical face seal. The permanent magnet has a magnetic field that decreases as a function of temperature. The magnetic sensor is mounted on the mechanical face seal in a magnetic field sensing relationship with the permanent magnet. The magnetic sensor is configured to generate a voltage signal corresponding to a sensed magnetic field.
Abstract:
A sensor arrangement for wirelessly measuring temperature and vibration is disclosed. The sensor arrangement includes a sensor element and a sensor coil affixed on the device. A readout coil is configured to be magnetically coupled to the sensor coil configured to energize the sensor coil with an energizing signal, configured to provide the natural frequency of the sensor element, the sensor coil, and the readout coil, and configured to provide amplitude modulations of the energizing signal, the amplitude modulations being induced by changes in the coupling factor of the readout coil and the sensor coil. An energizing circuit is configured to energize the readout coil with the energizing signal. A readout circuit is configured to store or display information regarding the natural frequency and the amplitude modulations.
Abstract:
A system for measuring a physical characteristic of a bearing includes a permanent magnet and a magnetic sensor. The permanent magnetic is coupled to at least a portion of a bearing, and has a magnetic field that changes as a function of the physical characteristic. For example, the permanent magnet has a magnetic characteristic that changes as a function of temperature. The magnetic sensor is operably disposed in a magnetic field sensing relationship with the permanent magnet, and is configured to generate a voltage signal and/or current signal corresponding to a sensed magnetic field.
Abstract:
A system for measuring a physical characteristic of a bearing includes a permanent magnet and a magnetic sensor. The permanent magnetic is coupled to at least a portion of a bearing, and has a magnetic field that changes as a function of the physical characteristic. For example, the permanent magnet has a magnetic characteristic that changes as a function of temperature. The magnetic sensor is operably disposed in a magnetic field sensing relationship with the permanent magnet, and is configured to generate a voltage signal and/or current signal corresponding to a sensed magnetic field.