Abstract:
An optical disk having an improved structure is provided so that about 15 gigabytes or more can be recorded on each information recording surface. The optical disk includes at least one information substrate having an incident surface where light for recording/reproducing signals is input and a recording surface where information signals are recorded, and at least one reflection layer formed by being coated on the recording surface for reflecting at least a part of incident light. In the optical disk, assuming that the entire thickness of the optical disk is D and the distance between the incident surface and the recording surface of the information substrate is D1, the inequality 0.20≦D1/D≦0.38 is satisfied. Also, the optical disk includes a first information substrate having an incident surface where light for recording/reproducing signals is input and a first recording surface where information signals are recorded, a first reflection layer formed by being coated on the first recording surface for reflecting at least a part of incident light, and a second reflection layer formed on the second recording surface for reflecting at least a part of incident light. In the optical disk, assuming that the entire thickness of the optical disk is D and the distance between the incident surface and the first recording surface of the first information substrate is D1, the inequality 0.20≦D1/D≦0.38 is satisfied.
Abstract translation:提供了具有改进结构的光盘,使得每个信息记录表面上可以记录大约15吉字节或更多。 光盘包括至少一个具有入射表面的信息衬底,其中输入用于记录/再现信号的光和记录信息信号的记录表面,以及至少一个反射层,其被形成在记录表面上以至少反射 一部分入射光。 在光盘中,假设光盘的整个厚度为D,信息基板的入射表面和记录表面之间的距离为D1,则满足不等式0.20 <= D1 / D <= 0.38。 此外,光盘包括具有入射面的第一信息基板,其中输入用于记录/再现信号的光,以及记录信息信号的第一记录表面,通过涂覆在第一记录表面上形成的第一反射层,用于反射 入射光的至少一部分,以及形成在第二记录面上的第二反射层,用于反射入射光的至少一部分。 在光盘中,假设光盘的整个厚度为D,并且第一信息基板的入射表面和第一记录表面之间的距离为D1,则满足不等式0.20 <= D1 / D <= 0.38。
Abstract:
An optical pickup includes a rotary block rotatably installed on a fixed base; a holder integrally coupled to the rotary block; a bobbin supported by a wires of the holder to be movable; a base plate fixed to the fixed base and placed between the rotary block and the bobbin; an objective lens mounted in the bobbin, for focusing an incident light to form a spot of light on a recording medium; a focusing coil and tracking coils installed in the bobbin, serving as a current flow path for focusing and tracking operations; first magnets and first inner and outer yokes installed in the base plate, facing the focusing coil and the tracking coils, for producing magnetic fields perpendicular to the current flowing through the focusing coil and the tracking coils to produce an electromagnetic force for driving the bobbin; a fixed optical system for irradiating light toward the recording medium and receiving the light reflected by the recording medium and then passed through the objective lens; a reflecting mirror for changing the traveling path of the incident light, the reflecting mirror installed in the rotary block to be arranged between the objective lens and the fixed optical system; tilt coils serving as a current flow path, the tilt coils installed at both sides of the rotary block; and second magnets and second inner and outer yokes installed facing the tilt coils, for producing magnetic fields perpendicular to the current flowing through the tilt coils to produce an electromagnetic force for rotating the rotary block. Therefore, the tilt of the optical axis of the light incident onto and reflected by an optical disk through the reflecting mirror and the objective lens can be adjusted according to the tilt of the recording medium, such that the light is perpendicularly incident onto and reflected by the recording medium all the time.
Abstract:
A magnetic circuit, an optical pickup actuator, an optical recording and/or reproducing apparatus using the magnetic circuit, and method of the same, wherein the magnetic circuit includes a plurality of focus coil units each of which includes a first focus coil and a second focus coil, and a magnet including a plurality of magnet portions which interact with the plurality of focus coil units and each of which is polarized in a direction opposite to adjacent magnet portions thereamong. Here, electromagnetic forces act on the first and second focus coils in each focus coil unit in a same direction in response to focus driving signals and in opposite directions in response to tilt driving signals, with the first and second focus coils in each focus coil unit have different effective coil lengths.
Abstract:
An optical pickup which, when a first light reflected by a recording medium is divided into a central light area and first and second peripheral light areas at both sides of the central light area, divides the first light reflected by the recording medium into at least 6 light areas, and the at least 6 light areas are independently detected from first through sixth light-receiving portions of a photodetector. Hence, the photodetector can detect a tracking error signal whose offset generation due to a shift of an objective lens is insensitive and whose offset generation due to an initial photodetector balance deviation is depressed.
Abstract:
An optical pickup apparatus includes a first light source to emit a first light beam having a predetermined wavelength, a first optical path changer to change a proceeding path of the first light beam, an objective lens to focus the first light beam on a recording medium, a diffraction member to divide the first light beam reflected by the recording medium into five light regions, the diffraction member having a first diffraction region having a wide width in a direction corresponding to a tangential direction of the recording medium and second through fifth diffraction regions sequentially arranged around the outside of the first diffraction region in a direction corresponding to a radial direction of the recording medium, and a first photodetector having first through fifth light receiving portions to receive the first light beam reflected by the recording medium.
Abstract:
An optical pickup for a recording medium includes a light source, an objective lens, a main photodetector, and a front photodetector. The configuration of the optical pickup enables converging or diverging of light to be incident on a plate beam splitter so that light can be received at an effective light receiving region of a front photodetector without interference due to internal reflection occurring in the plate beam splitter. In the alternative, a wedge beam splitter in the optical pickup includes first and second mirror planes at a predetermined angle to transmit and reflect incident light at a predetermined ratio. In the optical pickup, an amount of light that is exactly proportional to an output power of the light source can be detected, where the output power of the light source can be accurately controlled, thereby improving a linearity of the output power of the light source.
Abstract:
A method and an apparatus for identifying the type of an optical recording medium are provided. The method includes detecting a surface reflected signal SS and a writable-surface reflected signal SR of an optical recording medium while performing a focus search using a first optical system, counting a time difference DTS between a high peak and a low peak of the surface reflected signal SS, counting a time difference DTR between the high peak of the surface reflected signal and a high peak of the writable-surface reflected signal SR, obtaining DT by substituting DTR and DTS into the following equation: DT = ( DT R ) a ( DT S ) b ( a - b ≥ 1 2 ) and comparing DT with a reference time T, and driving the first optical system if DT is greater than T and driving a second optical system if DT is not greater than T.
Abstract translation:提供了一种用于识别光学记录介质的类型的方法和装置。 该方法包括在使用第一光学系统执行聚焦搜索的同时检测光学记录介质的表面反射信号S S S S和可写表面反射信号S SUB S R S,计数 在表面反射信号S S S的高峰值和低峰值之间的时差DT S S / S,计数在表面反射信号S S S上的时间差DT&lt; S&lt; 表面反射信号的高峰值和可写表面反射信号S的高峰值,通过用DT&lt; R&gt;和DT&lt; S&gt;和&lt; >进入以下公式:
Abstract:
An apparatus and method for detecting beam power generated by a plurality of light sources, using a single device. The apparatus includes a light-receiving unit that receives the beam power generated by one of a plurality of light sources, and an amplifying unit that selects a gain, amplifies the beam power received by the light-receiving unit according to the selected gain, and outputs the beam power amplified as a detected beam power. According to the apparatus and method, received beam power (or amplification gain) is amplified by a gain determined according to the characteristics of the respective light sources. Thus, it is possible to provide the detected beam power in consideration of a sufficient dynamic range for the each light source, thereby realizing effective APC.
Abstract:
A magnetic circuit and an optical recording and/or reproducing apparatus employing the magnetic circuit, having: a magnet with first and second magnetic portions adjacent to each other and opposite in polarity, and third and fourth magnetic portions surrounding the first and second magnetic portions, respectively, and have opposite polarities to the first and second magnetic portions, respectively; and at least one of a tracking coil unit or a focus coil unit. The tracking coil unit has first through third tracking coils arranged in a tracking direction so that each tracking coil interacts with two of the first through fourth magnetic portions. The focus coil unit has first through fourth focus coils, two of which are disposed in a focus direction to interact with the first and third magnetic portions, and the remaining two of which are disposed in the focus direction to interact with second and fourth magnetic portions.
Abstract:
An error signal detecting apparatus for an optical pickup employing a hologram grating, including a sensing lens for focusing light reflected from a recording medium, a hologram grating having first through fourth pattern regions arranged clockwise in a 2.times.2 matrix arrangement, for diffracting light incident from the sensing lens in different directions, wherein the first through fourth pattern regions a, b, c and d are formed such that a first focus of the +1st-order diffracted beams diffracted by the first and third pattern regions is relatively farther from the sensing lens than a second focus of the +1st-order diffracted beams diffracted by the second and fourth pattern regions, a photodetector disposed between the first and second focuses and having first through fourth light receiving units, for receiving the beams diffracted by the first through fourth pattern regions and independently photoelectrically converting the same, and a signal operation unit for detecting a focus error signal and/or a track error signal from detection signals of the light receiving parts. The error signal detecting apparatus can suppress generation of an offset of a focus error signal due to a change in the wavelength of a light source and an offsets of the focus error signal and track offset signal due to deviations of the photodetector.