Abstract:
Techniques are described that embed a digital assisted regulator with an LDO regulator on a chip without requiring a capacitor external to the chip and to regulate a voltage without undershoot. The digital assisted regulator responds to information regarding operation of the LDO regulator and to a signal that provides advance notification of a load change. When the advance notification signal is received, the digital assisted regulator pulls a circuit's supply voltage up to a chip's incoming supply voltage. When the correct operating voltage has been reached and any undershoot problem removed, the digital assisted regulator balances the current it provides with the current provided by the LDO regulator, to allow a quick response time for other load changes. Also, bandwidth of an LDO regulator may be expanded by use of an advance notice signal to increase bias current of an LDO output device to meet an upcoming load change.
Abstract:
A method includes receiving, at a voltage regulator, an activity adjustment signal from a digital circuit. The method also includes controlling one or more variable impedance elements of the voltage regulator to modify an output voltage provided to the digital circuit. The output voltage is based at least in part on the activity adjustment signal.
Abstract:
A method includes receiving, at a voltage regulator, an activity adjustment signal from a digital circuit. The method also includes controlling one or more variable impedance elements of the voltage regulator to modify an output voltage provided to the digital circuit. The output voltage is based at least in part on the activity adjustment signal.