METHOD FOR DYNAMICALLY UPDATING CLASSIFIER COMPLEXITY
    1.
    发明申请
    METHOD FOR DYNAMICALLY UPDATING CLASSIFIER COMPLEXITY 审中-公开
    动态更新分类器复杂度的方法

    公开(公告)号:US20160239736A1

    公开(公告)日:2016-08-18

    申请号:US14624500

    申请日:2015-02-17

    Inventor: Anthony SARAH

    CPC classification number: G06N3/08 G06N3/04 G06N3/082

    Abstract: A method for configuring a classifier includes operating the classifier to classify an input. The method also includes determining a confidence metric based on classification of the input. The method further includes dynamically updating a complexity of the classifier based on the confidence metric. The confidence metric may be computed based on a posterior probability. The complexity may be updated when the confidence metric is below a threshold value.

    Abstract translation: 用于配置分类器的方法包括操作分类器以对输入进行分类。 该方法还包括基于输入的分类来确定置信度量度。 该方法还包括基于置信度度动态地更新分类器的复杂性。 可以基于后验概率来计算置信量度。 当置信量度低于阈值时,可以更新复杂度。

    DETERMINING LAYER RANKS FOR COMPRESSION OF DEEP NETWORKS

    公开(公告)号:US20190228311A1

    公开(公告)日:2019-07-25

    申请号:US15877723

    申请日:2018-01-23

    Abstract: An apparatus of operating a computational network is configured to determine a low-rank approximation for one or more layers of the computational network based at least in part on a set of residual targets. A set of candidate rank vectors corresponding to the set of residual targets may be determined. Each of the candidate rank vectors may be evaluated using an objective function. A candidate rank vector may be selected and used to determine the low rank approximation. The computational network may be compressed based on the low-rank approximation. In turn the computational network may be operated using the one or more compressed layers.

    REDUCED COMPUTATIONAL COMPLEXITY FOR FIXED POINT NEURAL NETWORK
    5.
    发明申请
    REDUCED COMPUTATIONAL COMPLEXITY FOR FIXED POINT NEURAL NETWORK 审中-公开
    固定点神经网络的降低计算复杂度

    公开(公告)号:US20160328645A1

    公开(公告)日:2016-11-10

    申请号:US14882351

    申请日:2015-10-13

    CPC classification number: G06N3/08 G06N3/063 G06N20/00

    Abstract: A method of reducing computational complexity for a fixed point neural network operating in a system having a limited bit width in a multiplier-accumulator (MAC) includes reducing a number of bit shift operations when computing activations in the fixed point neural network. The method also includes balancing an amount of quantization error and an overflow error when computing activations in the fixed point neural network.

    Abstract translation: 一种降低在乘法器 - 累加器(MAC)中具有有限位宽度的系统中操作的固定点神经网络的计算复杂度的方法包括在计算固定点神经网络中的激活时减少多个位移操作。 该方法还包括在计算固定点神经网络中的激活时平衡量化误差量和溢出误差。

    CUSTOMIZED CLASSIFIER OVER COMMON FEATURES
    6.
    发明申请
    CUSTOMIZED CLASSIFIER OVER COMMON FEATURES 审中-公开
    自定义分类器通用功能

    公开(公告)号:US20150324689A1

    公开(公告)日:2015-11-12

    申请号:US14483075

    申请日:2014-09-10

    CPC classification number: G06N3/049 G06N3/0454 G06N3/08

    Abstract: A method of updating a set of classifiers includes applying a first set of classifiers to a first set of data. The method further includes requesting, from a remote device, a classifier update based on an output of the first set of classifiers or a performance measure of the application of the first set of classifiers.

    Abstract translation: 更新一组分类器的方法包括将第一组分类器应用于第一组数据。 该方法还包括从远程设备请求基于第一组分类器的输出的分类器更新或第一组分类器的应用的性能测量。

    DYNAMICALLY ASSIGNING AND EXAMINING SYNAPTIC DELAY
    7.
    发明申请
    DYNAMICALLY ASSIGNING AND EXAMINING SYNAPTIC DELAY 有权
    动态分析和检验SYNAPTIC DELAY

    公开(公告)号:US20150112908A1

    公开(公告)日:2015-04-23

    申请号:US14056856

    申请日:2013-10-17

    CPC classification number: G06N3/08 G06N3/049

    Abstract: A method for dynamically modifying synaptic delays in a neural network includes initializing a delay parameter and operating the neural network. The method further includes dynamically updating the delay parameter based on a program which is based on a statement including the delay parameter.

    Abstract translation: 用于动态修改神经网络中的突触延迟的方法包括初始化延迟参数并操作神经网络。 该方法还包括基于基于包括延迟参数的语句的程序来动态地更新延迟参数。

    COMPILING NETWORK DESCRIPTIONS TO MULTIPLE PLATFORMS
    8.
    发明申请
    COMPILING NETWORK DESCRIPTIONS TO MULTIPLE PLATFORMS 有权
    编译网络描述到多个平台

    公开(公告)号:US20150100529A1

    公开(公告)日:2015-04-09

    申请号:US14085740

    申请日:2013-11-20

    CPC classification number: G06N3/10 G06N3/049

    Abstract: A method of generating executable code for a target platform in a neural network includes receiving a spiking neural network description. The method also includes receiving platform-specific instructions for one or more target platforms. Further, the method includes, generating executable code for the target platform(s) based on the platform-specific instructions and the network description.

    Abstract translation: 在神经网络中为目标平台生成可执行代码的方法包括接收尖峰神经网络描述。 该方法还包括接收针对一个或多个目标平台的平台特定指令。 此外,该方法包括:基于特定于平台的指令和网络描述,为目标平台生成可执行代码。

    AUTOMATED METHOD FOR MODIFYING NEURAL DYNAMICS
    9.
    发明申请
    AUTOMATED METHOD FOR MODIFYING NEURAL DYNAMICS 有权
    用于修改神经动力学的自动化方法

    公开(公告)号:US20150095273A1

    公开(公告)日:2015-04-02

    申请号:US14066599

    申请日:2013-10-29

    Abstract: A method for improving neural dynamics includes obtaining prototypical neuron dynamics. The method also includes modifying parameters of a neuron model so that the neuron model matches the prototypical neuron dynamics. The neuron dynamics comprise membrane voltages and/or spike timing.

    Abstract translation: 改进神经动力学的方法包括获得原型神经元动力学。 该方法还包括修改神经元模型的参数,使得神经元模型与原型神经元动力学匹配。 神经元动力学包括膜电压和/或尖峰定时。

    METHOD FOR GENERATING COMPACT REPRESENTATIONS OF SPIKE TIMING-DEPENDENT PLASTICITY CURVES
    10.
    发明申请
    METHOD FOR GENERATING COMPACT REPRESENTATIONS OF SPIKE TIMING-DEPENDENT PLASTICITY CURVES 审中-公开
    用于产生SPIKE时序依赖性塑性曲线的紧密表示的方法

    公开(公告)号:US20140310216A1

    公开(公告)日:2014-10-16

    申请号:US14045672

    申请日:2013-10-03

    CPC classification number: G06N3/10 G06N3/049

    Abstract: A method generates compact representations of spike timing-dependent plasticity (STDP) curves. The method includes segmenting a set of data points into different sections. The method further includes representing at least one section as a primitive and storing parameters of the primitive. The primitive can be a polynomial.

    Abstract translation: 一种方法产生尖峰时间依赖可塑性(STDP)曲线的紧凑表示。 该方法包括将一组数据点分割成不同的部分。 该方法还包括将至少一个部分表示为原语并存储原语的参数。 原语可以是多项式。

Patent Agency Ranking