DISCOVERING LONG TERM EVOLUTION (LTE) ADVANCED IN UNLICENSED SPECTRUM BASE STATIONS
    1.
    发明申请
    DISCOVERING LONG TERM EVOLUTION (LTE) ADVANCED IN UNLICENSED SPECTRUM BASE STATIONS 审中-公开
    发现未经许可的频谱基站中推出的长期演进(LTE)

    公开(公告)号:US20160234757A1

    公开(公告)日:2016-08-11

    申请号:US14620146

    申请日:2015-02-11

    Abstract: The present disclosure presents a method and an apparatus for transmitting discovery signaling from a base station. For example, the method may include encoding a wireless fidelity (Wi-Fi) beacon at the base station for transmission and transmitting the encoded Wi-Fi beacon from the base station to one or more neighboring wireless nodes. The Wi-Fi beacon is generated by a Wi-Fi access point (AP) co-located at the base station which is a long term evolution (LTE) or LTE advanced in unlicensed spectrum base station. As such, other wireless nodes can discover the LTE or LTE advanced in unlicensed spectrum base station.

    Abstract translation: 本公开提供了一种用于从基站发送发现信令的方法和装置。 例如,该方法可以包括在基站处对无线保真(Wi-Fi)信标进行编码,以便传输,并将编码的Wi-Fi信标从基站发射到一个或多个相邻的无线节点。 Wi-Fi信标由位于基站的Wi-Fi接入点(AP)产生,该基站是长期演进(LTE)或未授权频谱基站中的LTE。 因此,其他无线节点可以在未许可频谱基站中发现LTE或LTE高级。

    BIT WIDTH SELECTION FOR FIXED POINT NEURAL NETWORKS
    3.
    发明申请
    BIT WIDTH SELECTION FOR FIXED POINT NEURAL NETWORKS 审中-公开
    固定点神经网络的位宽选择

    公开(公告)号:US20160328647A1

    公开(公告)日:2016-11-10

    申请号:US14936594

    申请日:2015-11-09

    CPC classification number: G06N3/08 G06F17/11 G06N3/063 G06N3/10

    Abstract: A method for selecting bit widths for a fixed point machine learning model includes evaluating a sensitivity of model accuracy to bit widths at each computational stage of the model. The method also includes selecting a bit width for parameters, and/or intermediate calculations in the computational stages of the mode. The bit width for the parameters and the bit width for the intermediate calculations may be different. The selected bit width may be determined based on the sensitivity evaluation.

    Abstract translation: 用于选择固定点机器学习模型的位宽度的方法包括在模型的每个计算阶段评估模型精度对位宽度的灵敏度。 该方法还包括在模式的计算阶段中选择参数的位宽度和/或中间计算。 参数的位宽和中间计算的位宽可能不同。 可以基于灵敏度评估来确定所选择的位宽度。

    FIXED POINT NEURAL NETWORK BASED ON FLOATING POINT NEURAL NETWORK QUANTIZATION
    4.
    发明申请
    FIXED POINT NEURAL NETWORK BASED ON FLOATING POINT NEURAL NETWORK QUANTIZATION 审中-公开
    基于浮动点神经网络定量的固定点神经网络

    公开(公告)号:US20160328646A1

    公开(公告)日:2016-11-10

    申请号:US14920099

    申请日:2015-10-22

    CPC classification number: G06N3/08 G06K9/4628 G06N3/04 G06N3/06 G06N3/10

    Abstract: A method of quantizing a floating point machine learning network to obtain a fixed point machine learning network using a quantizer may include selecting at least one moment of an input distribution of the floating point machine learning network. The method may also include determining quantizer parameters for quantizing values of the floating point machine learning network based at least in part on the at least one selected moment of the input distribution of the floating point machine learning network to obtain corresponding values of the fixed point machine learning network.

    Abstract translation: 使用量化器来量化浮点计算机学习网络以获得定点机器学习网络的方法可以包括选择浮点计算机学习网络的输入分布的至少一个时刻。 该方法还可以包括:至少部分地基于浮点机器学习网络的输入分布的至少一个选定时刻来确定用于量化浮点计算机学习网络的值的量化器参数,以获得固定点计算机的相应值 学习网络

    APPROXIMATION OF NON-LINEAR FUNCTIONS IN FIXED POINT USING LOOK-UP TABLES

    公开(公告)号:US20180060278A1

    公开(公告)日:2018-03-01

    申请号:US15255015

    申请日:2016-09-01

    CPC classification number: G06F17/17 G06F7/544 G06F2207/5354

    Abstract: Computing a non-linear function ƒ(x) in hardware or embedded systems can be complex and resource intensive. In one or more aspects of the disclosure, a method, a computer-readable medium, and an apparatus are provided for computing a non-linear function ƒ(x) accurately and efficiently in hardware using look-up tables (LUTs) and interpolation or extrapolation. The apparatus may be a processor. The processor computes a non-linear function ƒ(x) for an input variable x, where ƒ(x)=g(y(x),z(x)). The processor determines an integer n by determining a position of a most significant bit (MSB) of an input variable x. In addition, the processor determines a value for y(x) based on a first look-up table and the determined integer n. Also, the processor determines a value for z(x) based on n and the input variable x, and based on a second look-up table. Further, the processor computes ƒ(x) based on the determined values for y(x) and z(x).

    REDUCED COMPUTATIONAL COMPLEXITY FOR FIXED POINT NEURAL NETWORK
    7.
    发明申请
    REDUCED COMPUTATIONAL COMPLEXITY FOR FIXED POINT NEURAL NETWORK 审中-公开
    固定点神经网络的降低计算复杂度

    公开(公告)号:US20160328645A1

    公开(公告)日:2016-11-10

    申请号:US14882351

    申请日:2015-10-13

    CPC classification number: G06N3/08 G06N3/063 G06N20/00

    Abstract: A method of reducing computational complexity for a fixed point neural network operating in a system having a limited bit width in a multiplier-accumulator (MAC) includes reducing a number of bit shift operations when computing activations in the fixed point neural network. The method also includes balancing an amount of quantization error and an overflow error when computing activations in the fixed point neural network.

    Abstract translation: 一种降低在乘法器 - 累加器(MAC)中具有有限位宽度的系统中操作的固定点神经网络的计算复杂度的方法包括在计算固定点神经网络中的激活时减少多个位移操作。 该方法还包括在计算固定点神经网络中的激活时平衡量化误差量和溢出误差。

Patent Agency Ranking