Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for maintaining phase coherency in the event of changes to uplink transmit power. For example, the techniques described herein may help mitigate the impact on phase continuity of uplink transmissions by UEs capable of dual connectivity (DC).
Abstract:
Methods and apparatus are provided for allowing a transmitter (Tx) to perform antenna selection independently of a receiver (Rx) in a transceiver supporting both transmit diversity and receive diversity. Certain aspects may utilize a cross switch, which may be used in a parallel or cross configuration, to provide for the independent antenna selection, such that the Rx may maintain the ability to operate on the same antenna as the Tx, on another antenna, or on both antennas for enhanced receive diversity. Furthermore, certain aspects may employ additional switching in the baseband domain in an effort to avoid, or at least reduce, switching glitches in the Rx caused by changing the cross switch configuration. In this manner, the Rx need not re-converge upon antenna switching.
Abstract:
An analog-to-digital converter (ADC) has been disclosed. In some implementations, the ADC is configured to generate ADC samples based on input signals and an ADC input clock. The ADC is further configured to generate at a first time point a synchronized start signal indicating a starting point of capturing the ADC samples. The start signal and a system clock can be synchronized at a second time point. At a third time point, a capturing sample clock for capturing the ADC samples is generated. The synchronized start signal and the capturing sample clock can be input to a counter to determine a time difference between the second and third time points. An ADC output timing of the ADC samples can be determined based on the time difference.
Abstract:
According to embodiments, an example method for determining an analog-to-digital converter (ADC) output timing in a user equipment may include operating a switch in a first mode to route a system clock from an oscillator to an input of the ADC and determining a first ADC output timing based on a first set of ADC samples generated by the ADC. The method may also include operating the switch in a second mode to route analog signals from a transceiver of the user equipment to the input of the ADC and obtaining a second set of ADC samples generated by the ADC based on the analog signals.
Abstract:
Methods and apparatus are provided for allowing a transmitter (Tx) to perform antenna selection independently of a receiver (Rx) in a transceiver supporting both transmit diversity and receive diversity. Certain aspects may utilize a cross switch, which may be used in a parallel or cross configuration, to provide for the independent antenna selection, such that the Rx may maintain the ability to operate on the same antenna as the Tx, on another antenna, or on both antennas for enhanced receive diversity. Furthermore, certain aspects may employ additional switching in the baseband domain in an effort to avoid, or at least reduce, switching glitches in the Rx caused by changing the cross switch configuration. In this manner, the Rx need not re-converge upon antenna switching.