Abstract:
Various aspects related to techniques for harmonization between common reference signal (CRS) and demodulation reference signal (DM-RS) based transmission modes (TMs) in unlicensed spectrum are described. In one aspect, a downlink/uplink (DL/UL) subframe configuration may be signaled for each subframe. Information provided by the DL/UL subframe configuration may indicate whether the respective downlink subframe is a single-frequency network (MBSFN) subframe (associated with DM-RS-based TM) or a non-MBSFN subframe (associated with CRS-based TM). In another aspect, periodic as well as aperiodic channel state information (CSI) reporting requests may be supported. In yet another aspect, discontinued reception (DRX) wake ups for unlicensed carriers may be explicitly or implicitly indicated to a user equipment (UE) via a carrier in a licensed spectrum.
Abstract:
The present disclosure relates to resolving out-of-sync uplink grants for communication in an unlicensed spectrum. For example, a user equipment (UE) may receive an uplink grant from a network entity on a downlink communication channel, wherein the uplink grant is associated with a system frame number (SFN). The UE may further determine, based on the SFN, that the uplink grant is out of order with one or more stored uplink grants within a queue. Additionally, the UE may insert the uplink grant in an ordered position within the queue relative to the one or more stored uplink grants.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may transmit a configuration for enhanced paging to a UE being served by a cell over a shared frequency band. The enhanced paging may include multiple paging intervals for each paging cycle. The UE may enable reception for a paging interval and determine whether the UE receives a downlink transmission. The UE may lengthen a paging interval or enable reception during a second paging interval based in part on determining whether the UE receives a downlink transmission. In some examples, the UE may receive a paging queue status indication indicating that paging information will be transmitted during a paging interval or a later interval, or indicating that no paging information is present at a serving cell.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) and a base station operating in unlicensed spectrum may temporarily increase a paging opportunity window (POW) size, or reduce a time between POWs, in order to meet performance metrics or account for time periods when a base station is unable to win access to the wireless medium during a POW. In some cases, a UE may identify a failed listen-before-talk procedure and autonomously update the POW size. In other examples, a base station may initiate a change in POW size or increase a number of paging opportunities in order to meet achieve one or more key performance indicators (KPIs). After a predetermined period, or after a triggering condition is no longer present, the UE and the base station may reset the POW size or the number of paging opportunities to a nominal amount to conserve power.
Abstract:
In wireless communication networks using carrier aggregation including a secondary component carrier in unlicensed spectrum, a user equipment (UE) may monitor a downlink radio link quality of secondary cells for an event indicating failure of a communication link in the unlicensed spectrum with a secondary cell. The UE detects one or more failure events based on the downlink radio link quality. When a designated set of failure events is detected, the UE declares a failure state on the secondary cell. In response to the failure state, the UE may adjust operations related to the secondary component carrier in the unlicensed spectrum in order to save power and resources.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may transmit a configuration for enhanced paging to a UE being served by a cell over a shared frequency band. The enhanced paging may include multiple paging intervals for each paging cycle. The UE may enable reception for a paging interval and determine whether the UE receives a downlink transmission. The UE may lengthen a paging interval or enable reception during a second paging interval based in part on determining whether the UE receives a downlink transmission. In some examples, the UE may receive a paging queue status indication indicating that paging information will be transmitted during a paging interval or a later interval, or indicating that no paging information is present at a serving cell.
Abstract:
Methods, systems, and devices for wireless communication are described. A wireless system may support efficient techniques for adding license assisted access (LAA) secondary cells (SCells) to a secondary timing advance group (sTAG). For example, a base station may determine whether to add an LAA SCell to an sTAG based on whether the LAA SCell is a scheduling carrier for a user equipment (UE). That is, the base station may determine whether to add an LAA SCell to an sTAG based on whether a UE scheduled to communicate over the LAA SCell is self-scheduled over the LAA SCell or cross-carrier scheduled over another cell. As such, the wireless system may improve the likelihood that a UE may receive a downlink transmission over an LAA SCell in an sTAG that the UE may use to determine a downlink timing reference for an uplink transmission over the LAA SCell.
Abstract:
Methods, systems, and devices are described for improving discontinuous reception (DRX) power usage by dynamically updating (e.g., adjusting) a warmup period. A user equipment (UE) communicating with a wireless network may operate in DRX mode by periodically powering down radio components. For example, during a first DRX On Duration, the UE may estimate the variance in channel conditions. The UE may then update the baseband convergence portion of the warmup time prior to the upcoming DRX On Duration. The UE may reduce the baseband convergence period or increase the baseband convergence period based on a function of the channel variance. The UE may also maintain a table relating a set of channel variance values with a set of baseband convergence periods, and update the baseband convergence period based on the table.
Abstract:
Methods and apparatus are provided for allowing a transmitter (Tx) to perform antenna selection independently of a receiver (Rx) in a transceiver supporting both transmit diversity and receive diversity. Certain aspects may utilize a cross switch, which may be used in a parallel or cross configuration, to provide for the independent antenna selection, such that the Rx may maintain the ability to operate on the same antenna as the Tx, on another antenna, or on both antennas for enhanced receive diversity. Furthermore, certain aspects may employ additional switching in the baseband domain in an effort to avoid, or at least reduce, switching glitches in the Rx caused by changing the cross switch configuration. In this manner, the Rx need not re-converge upon antenna switching.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may transmit a configuration for enhanced paging to a UE being served by a cell over a shared frequency band. The enhanced paging may include multiple paging intervals for each paging cycle. The UE may enable reception for a paging interval and determine whether the UE receives a downlink transmission. The UE may lengthen a paging interval or enable reception during a second paging interval based in part on determining whether the UE receives a downlink transmission. In some examples, the UE may receive a paging queue status indication indicating that paging information will be transmitted during a paging interval or a later interval, or indicating that no paging information is present at a serving cell.