Abstract:
A receiver circuit, including a multi-stage QAM de-mapper, for receiving a QAM data signal is disclosed. A first de-mapper circuit recovers a set of encoded data bits from the QAM data signal by calculating a plurality of distances between a received QAM symbol and each of a plurality of possible constellation points. A second de-mapper circuit then generates a set of unencoded data bits for the received QAM symbol based, at least in part, on the plurality of distances calculated by the first de-mapper circuit. The receiver circuit may further include a decoder circuit to decode the set of encoded data bits recovered by the first de-mapper circuit. The second de-mapper circuit may identify a subset of the plurality of possible constellation points based on a result of the decoding and select a constellation point that is associated with the shortest distance of the plurality of distances.
Abstract:
A coax line terminal (CLT) transmits allocations of upstream bandwidth to a plurality of coax network units (CNUs). In response to the allocations, the CLT receives frames with data in a plurality of physical resource blocks that each correspond to a distinct set of subcarriers. The plurality of physical resource blocks includes a first group of physical resource blocks that all have a first constant allowed capacity. Sizes and modulation orders of respective physical resource blocks in the first group vary as defined by a first modulation profile. The data in the first group are received from one or more CNUs that are assigned the first modulation profile.
Abstract:
A coax line terminal (CLT) transmits allocations of upstream bandwidth to a plurality of coax network units (CNUs). In response to the allocations, the CLT receives frames with data in a plurality of physical resource blocks that each correspond to a distinct set of subcarriers. The plurality of physical resource blocks includes a first group of physical resource blocks that all have a first constant allowed capacity. Sizes and modulation orders of respective physical resource blocks in the first group vary as defined by a first modulation profile. The data in the first group are received from one or more CNUs that are assigned the first modulation profile.
Abstract:
A receiver circuit, including a multi-stage QAM de-mapper, for receiving a QAM data signal is disclosed. A first de-mapper circuit recovers a set of encoded data bits from the QAM data signal by calculating a plurality of distances between a received QAM symbol and each of a plurality of possible constellation points. A second de-mapper circuit then generates a set of unencoded data bits for the received QAM symbol based, at least in part, on the plurality of distances calculated by the first de-mapper circuit. The receiver circuit may further include a decoder circuit to decode the set of encoded data bits recovered by the first de-mapper circuit. The second de-mapper circuit may identify a subset of the plurality of possible constellation points based on a result of the decoding and select a constellation point that is associated with the shortest distance of the plurality of distances.
Abstract:
An adaptive filter bank can be implemented on a PLC device to dynamically adapt to variations in notching requirements and the performance of the PLC medium. The PLC device can apply filter coefficients to one or more filter elements of the adaptive filter bank to generate one or more notched subcarriers in the PLC band. A performance measurement of one or more subcarriers in the PLC band can be determined and evaluated against corresponding performance measurement thresholds. For a given notched subcarrier, if the performance measurement of the corresponding subcarriers is not in accordance with the performance measurement threshold, updated filter coefficients for the filter element configured to generate the notched subcarrier can be determined based, at least in part, on the performance measurement of the one or more subcarriers. The filter coefficients of the filter element can then be updated using the updated filter coefficients.