AUDITORY SOURCE SEPARATION IN A SPIKING NEURAL NETWORK
    1.
    发明申请
    AUDITORY SOURCE SEPARATION IN A SPIKING NEURAL NETWORK 有权
    在SPIKING神经网络中的审计来源分离

    公开(公告)号:US20150235125A1

    公开(公告)日:2015-08-20

    申请号:US14286556

    申请日:2014-05-23

    Abstract: A method of audio source segregation includes selecting an audio attribute of an audio signal. The method also includes representing a portion of the audio attribute that is dominated by a single source as a source spiking event. In addition, the method includes representing a remaining portion of the audio signal as an audio signal spiking event. The method further includes determining whether the remaining portion coincides with the single source based on coincidence of the source spiking event and audio signal spiking event.

    Abstract translation: 音频源隔离的方法包括选择音频信号的音频属性。 该方法还包括将由单个源主导的音频属性的一部分表示为源尖峰事件。 此外,该方法包括将音频信号的剩余部分表示为音频信号尖峰事件。 该方法还包括基于源尖峰事件和音频信号尖峰事件的一致性确定剩余部分是否与单个源重合。

    MODULATING PLASTICITY BY GLOBAL SCALAR VALUES IN A SPIKING NEURAL NETWORK
    2.
    发明申请
    MODULATING PLASTICITY BY GLOBAL SCALAR VALUES IN A SPIKING NEURAL NETWORK 审中-公开
    通过全球标量值在SPIKING神经网络中调制塑性

    公开(公告)号:US20150286925A1

    公开(公告)日:2015-10-08

    申请号:US14248211

    申请日:2014-04-08

    CPC classification number: G06N3/049 G06N3/08

    Abstract: A method for maintaining a state variable in a synapse of a neural network includes maintaining a state variable in an axon. The state variable in the axon may be updated based on an occurrence of a first predetermined event. The method also includes updating the state variable in the synapse based on the state variable in the axon and an occurrence of a second predetermined event.

    Abstract translation: 维持神经网络突触状态变量的方法包括维持轴突中的状态变量。 可以基于第一预定事件的发生来更新轴突中的状态变量。 该方法还包括基于轴突中的状态变量和第二预定事件的发生来更新突触中的状态变量。

    DYNAMIC SPATIAL TARGET SELECTION
    3.
    发明申请
    DYNAMIC SPATIAL TARGET SELECTION 审中-公开
    动态空间目标选择

    公开(公告)号:US20150242746A1

    公开(公告)日:2015-08-27

    申请号:US14325169

    申请日:2014-07-07

    Abstract: A method of dynamically modifying target selection with a neural network includes dynamically modifying a selection function by controlling an amount of imbalance of connections in the neural network. A selected neuron represents one of multiple candidate targets.

    Abstract translation: 用神经网络动态修改目标选择的方法包括通过控制神经网络中的连接的不平衡量来动态修改选择功能。 选择的神经元代表多个候选目标之一。

    EVALUATION OF A SYSTEM INCLUDING SEPARABLE SUB-SYSTEMS OVER A MULTIDIMENSIONAL RANGE
    5.
    发明申请
    EVALUATION OF A SYSTEM INCLUDING SEPARABLE SUB-SYSTEMS OVER A MULTIDIMENSIONAL RANGE 有权
    包含多个分立系统的系统的评估

    公开(公告)号:US20150120632A1

    公开(公告)日:2015-04-30

    申请号:US14065388

    申请日:2013-10-28

    Abstract: An artificial neural network may be configured to test the impact of certain input parameters. To improve testing efficiency and to avoid test runs that may not alter system performance, the effect of input parameters on neurons or groups of neurons may be determined to classify the neurons into groups based on the impact of certain parameters on those groups. Groups may be ordered serially and/or in parallel based on the interconnected nature of the groups and whether the output of neurons in one group may affect the operation of another. Parameters not affecting group performance may be pruned as inputs to that particular group prior to running system tests, thereby conserving processing resources during testing.

    Abstract translation: 可以配置人造神经网络来测试某些输入参数的影响。 为了提高测试效率并避免可能不会改变系统性能的测试运行,可以基于某些参数对这些组的影响来确定输入参数对神经元或神经元组的影响,以将神经元分组成组。 可以基于组的相互联系的性质,并且一组中的神经元的输出是否可能影响另一组的操作,可以串联和/或并行排列组。 在运行系统测试之前,不影响组性能的参数可以作为该特定组的输入修剪,从而在测试期间节省处理资源。

    SYSTEM OF DISTRIBUTED PLANNING
    6.
    发明申请
    SYSTEM OF DISTRIBUTED PLANNING 审中-公开
    分布式规划系统

    公开(公告)号:US20160260024A1

    公开(公告)日:2016-09-08

    申请号:US14856256

    申请日:2015-09-16

    CPC classification number: G06N20/00 G06N3/02 G06Q10/10 G09B19/00

    Abstract: A method for performing a desired sequence of actions includes determining a list of candidate activities based on negotiations with at least one other entity. The determining is also based on preference information, an expected reward, a priority and/or a task list. The list of candidate activities may also be determined based on reinforcement learning. The method also includes receiving a selection of one of the candidate activities. The method further includes performing a sequence of actions corresponding to the selected candidate activity. In this manner, a smartphone or other computing device may be transformed into an intelligent companion for planning activities.

    Abstract translation: 用于执行期望的动作序列的方法包括基于与至少一个其他实体的协商来确定候选活动的列表。 该确定还基于偏好信息,预期奖励,优先级和/或任务列表。 候选人活动名单也可以根据加强学习确定。 该方法还包括接收候选活动之一的选择。 该方法还包括执行与选择的候选活动相对应的动作序列。 以这种方式,智能手机或其他计算设备可以被转换成用于规划活动的智能伴侣。

    IN SITU NEURAL NETWORK CO-PROCESSING
    7.
    发明申请
    IN SITU NEURAL NETWORK CO-PROCESSING 审中-公开
    在现代神经网络协同处理中

    公开(公告)号:US20150242741A1

    公开(公告)日:2015-08-27

    申请号:US14273214

    申请日:2014-05-08

    Abstract: A method of executing co-processing in a neural network comprises swapping a portion of the neural network to a first processing node for a period of time. The method also includes executing the portion of the neural network with the first processing node. Additionally, the method includes returning the portion of the neural network to a second processing node after the period of time. Further, the method includes executing the portion of the neural network with the second processing node.

    Abstract translation: 在神经网络中执行协同处理的方法包括将神经网络的一部分交换到第一处理节点一段时间。 该方法还包括用第一处理节点执行神经网络的部分。 此外,该方法包括在该时间段之后将神经网络的部分返回到第二处理节点。 此外,该方法包括用第二处理节点执行神经网络的部分。

Patent Agency Ranking