Abstract:
Uplink scheduling for license assisted access (LAA) mode systems is discussed in which a base station transmits a conditional grant to served user equipments (UEs) that include a transmission configuration for uplink transmissions. The transmission configuration includes the parameters necessary for the UE to perform transmissions. Before the beginning of a uplink transmission opportunity, a base station transmits an uplink activation grant over a contention-based shared carrier to the served UEs. The uplink activation grant indicates the transmission opportunity to the UEs and may identify a subset of UEs out of the served UEs that are available for transmission. The base station first secures the channel before transmitting the uplink activation grant. Upon receipt of the uplink activation grant, the UEs determine whether they will perform uplink transmissions and, if so, transmit the uplink data according to the transmission configuration.
Abstract:
Transmission time interval (TTI) bundling for ultra-reliable low-latency communication (URLLC) uplink and downlink transmissions is discussed in which a base station or user equipments (UEs) determine conditions for one or more served UEs that would indicate enabling TTI bundling for data and/or control transmissions. The serving base station transmits an enablement signal signifying that TTI bundling will be performed for data and/or control transmissions. The enablement signal may include a bundle length for the transmission bundle. The data or control signal packets may then be repeatedly transmitted to the UEs a number of times corresponding to the bundle length.
Abstract:
Transmission time interval (TTI) bundling for ultra-reliable low-latency communication (URLLC) uplink and downlink transmissions is discussed in which a base station or user equipments (UEs) determine conditions for one or more served UEs that would indicate enabling TTI bundling for data and/or control transmissions. The serving base station transmits an enablement signal signifying that TTI bundling will be performed for data and/or control transmissions. The enablement signal may include a bundle length for the transmission bundle. The data or control signal packets may then be repeatedly transmitted to the UEs a number of times corresponding to the bundle length.
Abstract:
Systems and methods for frequency reuse on downlink control channels (DLCCs) are provided. One method can include determining a first number of symbols to support transmission of control information on a DLCC, and configuring a second number of symbols for transmission of the control information on the DLCC, wherein the second number of symbols is greater than the first number of symbols. The method can also include assigning a number of DLCCs based on the second number of symbols, and transmitting control information over an assigned number of DLCCs to achieve an effective reuse factor less than one. Another method can include identifying fractions of bandwidth in a system having cells, and allocating at least one of the cells to at least one of the fractions of bandwidth in a system. Resource element groups allocated to the fractions of bandwidth can be coordinated across cells to provide frequency reuse.