Abstract:
A simple format is disclosed and referred to as Elementary Network Description (END). The format can fully describe a large-scale neuronal model and embodiments of software or hardware engines to simulate such a model efficiently. The architecture of such neuromorphic engines is optimal for high-performance parallel processing of spiking networks with spike-timing dependent plasticity. Methods for managing memory in a processing system are described whereby memory can be allocated among a plurality of elements and rules configured for each element such that the parallel execution of the spiking networks is most optimal.
Abstract:
Apparatus and methods for activity based plasticity in a spiking neuron network adapted to process sensory input. In one approach, the plasticity mechanism of a connection may comprise a causal potentiation portion and an anti-causal portion. The anti-causal portion, corresponding to the input into a neuron occurring after the neuron response, may be configured based on the prior activity of the neuron. When the neuron is in low activity state, the connection, when active, may be potentiated by a base amount. When the neuron activity increases due to another input, the efficacy of the connection, if active, may be reduced proportionally to the neuron activity. Such functionality may enable the network to maintain strong, albeit inactive, connections available for use for extended intervals.
Abstract:
Apparatus and methods for learning in response to temporally-proximate features. In one implementation, an image processing apparatus utilizes bi-modal spike timing dependent plasticity in a spiking neuron network. Based on a response by the neuron to a frame of input, the bi-modal plasticity mechanism is used to depress synaptic connections delivering the present input frame and to potentiate synaptic connections delivering previous and/or subsequent frames of input. The depression of near-contemporaneous input prevents the creation of a positive feedback loop and provides a mechanism for network response normalization.
Abstract:
Apparatus and methods for partial evaluation of synaptic updates in neural networks. In one embodiment, a pre-synaptic unit is connected to a several post synaptic units via communication channels. Information related to a plurality of post-synaptic pulses generated by the post-synaptic units is stored by the network in response to a system event. Synaptic channel updates are performed by the network using the time intervals between a pre-synaptic pulse, which is being generated prior to the system event, and at least a portion of the plurality of the post synaptic pulses. The system event enables removal of the information related to the portion of the post-synaptic pulses from the storage device. A shared memory block within the storage device is used to store data related to post-synaptic pulses generated by different post-synaptic nodes. This configuration enables memory use optimization of post-synaptic units with different firing rates.
Abstract:
A simple format is disclosed and referred to as Elementary Network Description (END). The format can fully describe a large-scale neuronal model and embodiments of software or hardware engines to simulate such a model efficiently. The architecture of such neuromorphic engines is optimal for high-performance parallel processing of spiking networks with spike-timing dependent plasticity. The software and hardware engines are optimized to take into account short-term and long-term synaptic plasticity in the form of LTD, LTP, and STDP.
Abstract:
Apparatus and methods for activity based plasticity in a spiking neuron network adapted to process sensory input. In one approach, the plasticity mechanism of a connection may comprise a causal potentiation portion and an anti-causal portion. The anti-causal portion, corresponding to the input into a neuron occurring after the neuron response, may be configured based on the prior activity of the neuron. When the neuron is in low activity state, the connection, when active, may be potentiated by a base amount. When the neuron activity increases due to another input, the efficacy of the connection, if active, may be reduced proportionally to the neuron activity. Such functionality may enable the network to maintain strong, albeit inactive, connections available for use for extended intervals.