Apparatus and methods for rate-modulated plasticity in a neuron network
    1.
    发明授权
    Apparatus and methods for rate-modulated plasticity in a neuron network 有权
    神经元网络中速率调制可塑性的装置和方法

    公开(公告)号:US09436908B2

    公开(公告)日:2016-09-06

    申请号:US13774934

    申请日:2013-02-22

    CPC classification number: G06N3/08 G06N3/02 G06N3/049 G06N3/10 G06N99/005

    Abstract: Apparatus and methods for activity based plasticity in a spiking neuron network adapted to process sensory input. In one approach, the plasticity mechanism of a connection may comprise a causal potentiation portion and an anti-causal portion. The anti-causal portion, corresponding to the input into a neuron occurring after the neuron response, may be configured based on the prior activity of the neuron. When the neuron is in low activity state, the connection, when active, may be potentiated by a base amount. When the neuron activity increases due to another input, the efficacy of the connection, if active, may be reduced proportionally to the neuron activity. Such functionality may enable the network to maintain strong, albeit inactive, connections available for use for extended intervals.

    Abstract translation: 适用于处理感觉输入的加标神经元网络中基于活动的可塑性的装置和方法。 在一种方法中,连接的可塑性机构可以包括因果增强部分和反因果部分。 可以基于神经元的先前活动来配置对应于在神经元响应之后发生的神经元的输入的反因果部分。 当神经元处于低活动状态时,当活动时,连接可能被基础量增强。 当神经元活动由于另一个输入而增加时,如果活动,连接的功效可以与神经元活动成比例地降低。 这样的功能可以使得网络能够维持可用于延长的间隔的强的,虽然是不活动的连接。

    Spiking network apparatus and method with bimodal spike-timing dependent plasticity
    3.
    发明授权
    Spiking network apparatus and method with bimodal spike-timing dependent plasticity 有权
    具有双峰尖峰定时相关可塑性的峰值网络装置和方法

    公开(公告)号:US09177245B2

    公开(公告)日:2015-11-03

    申请号:US13763005

    申请日:2013-02-08

    Abstract: Apparatus and methods for learning in response to temporally-proximate features. In one implementation, an image processing apparatus utilizes bi-modal spike timing dependent plasticity in a spiking neuron network. Based on a response by the neuron to a frame of input, the bi-modal plasticity mechanism is used to depress synaptic connections delivering the present input frame and to potentiate synaptic connections delivering previous and/or subsequent frames of input. The depression of near-contemporaneous input prevents the creation of a positive feedback loop and provides a mechanism for network response normalization.

    Abstract translation: 响应于时间上接近的特征学习的装置和方法。 在一个实施方案中,图像处理装置在加标神经元网络中利用双模态尖峰时间相关可塑性。 基于神经元对输入帧的响应,双模式可塑性机制用于抑制递送当前输入帧的突触连接并且加强递送先前和/或后续输入帧的突触连接。 近同期输入的抑制阻止了正反馈回路的创建,并提供了网络响应归一化的机制。

Patent Agency Ranking