Abstract:
A method includes, at a first device while the first device is connected to a wireless local area network (WLAN) and a second device is unconnected to the WLAN, establishing a secure channel to the second device using an EAP exchange. The method also includes sending at least one credential associated with the WLAN to the second device via the secure channel to enable the second device to connect to the WLAN.
Abstract:
Transmission techniques using configurable channels for the downlink and/or uplink are described. In one aspect, the downlink channel and/or uplink channel may be independently selected for a terminal. The terminal may establish a connection with a base station on default downlink and uplink channels. Another downlink channel and/or another uplink channel may be selected based on various factors such as channel quality, loading, and interference. The terminal would then switch to the new downlink and/or uplink channel for communication. In another aspect, the base stations broadcast sector information used by the terminals for communication and/or channel selection. The sector information may include various types of information such as the available downlink and uplink channels, the frequencies of the available channels, the loading on the available channels, and QoS information. The terminals may select a sector, a downlink channel, and/or an uplink channel based on the sector information.
Abstract:
Transmission techniques using configurable channels for the downlink and/or uplink are described. In one aspect, the downlink channel and/or uplink channel may be independently selected for a terminal. The terminal may establish a connection with a base station on default downlink and uplink channels. Another downlink channel and/or another uplink channel may be selected based on various factors such as channel quality, loading, and interference. The terminal would then switch to the new downlink and/or uplink channel for communication. In another aspect, the base stations broadcast sector information used by the terminals for communication and/or channel selection. The sector information may include various types of information such as the available downlink and uplink channels, the frequencies of the available channels, the loading on the available channels, and QoS information. The terminals may select a sector, a downlink channel, and/or an uplink channel based on the sector information.
Abstract:
Synchronization of communication events according to a global time base (GTB). Devices implementing the GTB may be configured to awaken and exchange discovery and service capability information over pre-scheduled channels at time points determined according to the GTB. The GTB may be correlated to Global Positioning System (GPS) system time. A global time server (GTS) is described for providing a local source of accurate clock time relative to the GTB. The GTS may aggregate multiple sources of absolute and/or relative time including GPS and WWAN, select the most accurate source for a mobile environment, track source state transitions, and manage clock drift. Global time clients (GTCs) may receive updates from the GTS and compute offsets for communication events relative to a local clock. The GTC may correct for transport errors from transmission of the updated global time value across modules or sub-components of the devices.
Abstract:
Synchronization of communication events according to a global time base (GTB). Devices implementing the GTB may be configured to awaken and exchange discovery and service capability information over pre-scheduled channels at time points determined according to the GTB. The GTB may be correlated to Global Positioning System (GPS) system time. A global time server (GTS) is described for providing a local source of accurate clock time relative to the GTB. The GTS may aggregate multiple sources of absolute and/or relative time including GPS and WWAN, select the most accurate source for a mobile environment, track source state transitions, and manage clock drift. Global time clients (GTCs) may receive updates from the GTS and compute offsets for communication events relative to a local clock. The GTC may correct for transport errors from transmission of the updated global time value across modules or sub-components of the devices.
Abstract:
Transmission techniques using configurable channels for the downlink and/or uplink are described. In one aspect, the downlink channel and/or uplink channel may be independently selected for a terminal The terminal may establish a connection with a base station on default downlink and uplink channels. Another downlink channel and/or another uplink channel may be selected based on various factors such as channel quality, loading, and interference. The terminal would then switch to the new downlink and/or uplink channel for communication. In another aspect, the base stations broadcast sector information used by the terminals for communication and/or channel selection. The sector information may include various types of information such as the available downlink and uplink channels, the frequencies of the available channels, the loading on the available channels, and QoS information. The terminals may select a sector, a downlink channel, and/or an uplink channel based on the sector information.
Abstract:
A method includes, at a first device while the first device is connected to a wireless local area network (WLAN) and a second device is unconnected to the WLAN, establishing a secure channel to the second device using an EAP exchange. The method also includes sending at least one credential associated with the WLAN to the second device via the secure channel to enable the second device to connect to the WLAN.