Abstract:
Aspects of the disclosure are directed to, for example, methods for operating a node manager such as a node manager operably coupled to a solar tracker assembly. In one embodiment, the method includes providing control signals to motors of the solar tracker assembly to control an orientation of a photovoltaic array and receiving status information form one or more sensors configured to measure at least one of ambient, operating, and performance conditions local to tracker electronics of the tracker assembly. The method further includes modifying the control signals based, at least in part, on the status information and communicating, via the tracker electronics, at least a portion of the status information over a cellular communication via a cellular link.
Abstract:
Aspects of the disclosure are directed to a solar tracker assembly. In one embodiment, the assembly includes a base having a track, a centrally-positioned base member, a motor operably coupled to the base member, and a plurality of arms extending from the base member towards the track, with the track including a plurality of arcuate members that are assembled to form the track. A rotatable frame is coupled to the arms and has one or more towers and an actuator positioned on the one or more towers. A pivoting frame is coupled to the one or more towers, with the pivoting frame configured to carry a solar panel array. In operation, the motor can rotate the base member and arms around a Z-axis to position the rotatable frame at azimuth and the actuator can move the pivoting frame around an X-Y axis to position the pivoting frame at zenith.
Abstract:
Aspects of the disclosure are directed to an autonomous energy distribution network including a plurality of solar tracker devices configured to receive solar energy and transform the solar energy into electrical energy, where each of the solar tracker devices is directly connected to a node in a power distribution grid. The network also includes a node manager configured to receive status information from the solar trackers, where the status information includes information regarding the state of the node to which each of the solar tracker device are directly connected.
Abstract:
Aspects of the disclosure are directed to a solar tracker assembly. In one embodiment, the assembly includes a base having a track, a centrally-positioned base member, a motor operably coupled to the base member, and a plurality of arms extending from the base member towards the track, with the track including a plurality of arcuate members that are assembled to form the track. A rotatable frame is coupled to the arms and has one or more towers and an actuator positioned on the one or more towers. A pivoting frame is coupled to the one or more towers, with the pivoting frame configured to carry a solar panel array. In operation, the motor can rotate the base member and arms around a Z-axis to position the rotatable frame at azimuth and the actuator can move the pivoting frame around an X-Y axis to position the pivoting frame at zenith.
Abstract:
Aspects of the disclosure are directed to an autonomous energy distribution network including a plurality of solar tracker devices configured to receive solar energy and transform the solar energy into electrical energy, where each of the solar tracker devices is directly connected to a node in a power distribution grid. The network also includes a node manager configured to receive status information from the solar trackers, where the status information includes information regarding the state of the node to which each of the solar tracker device are directly connected.